推荐算法

记录一下推荐算法。

CF、基于内容、热门推荐

用户模型

在实践中,大多数业内人士都是用一种被称为「随机梯度下降」(SGD - Stochastic Gradient Descent)的算法(梯度下降Grident Descent 是「最小化风险函数」以及「损失函数」的一种常用方法,「随机梯度下降」是此类下的一种通过迭代求解的思路)。每一次迭代包括以下几个步骤:获取一些样本的输入矢量( input vector),计算输出结果和误差,计算这些样本的平均梯度,根据平均梯度调整相应权重。这个过程在各个从整个训练集中抽取的小子集之上重复,直到目标函数的平均值停止下降。它被称做随机(Stochastic)是因为每个样本组都会给出一个对于整个训练集( training set)的平均梯度(average gradient)的噪音估值(noisy estimate)。较于更加精确的组合优化技术,这个简单的方法通常可以神奇地快速地找出一个权重适当的样本子集。训练过后,系统的性能将在另外一组不同样本(即测试集)上进行验证,以期测试机器的泛化能力( generalization ability) ——面对训练中从未遇过的新输入,机器能够给出合理答案。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

1.深度学习概念简介

简介 1. 什么是神经网络? 1.1 单个神经元网络 ? 如上图所示,我们想通过房子的面积来预测房子的价格。用单个神经网络来解决这个问题如下所示: ? 输入x为...

29480
来自专栏人工智能的秘密

神经网络是什么?又能干什么?

现在深度学习炒得非常火热,其实它的本质还是把神经网络算法进行延伸和优化而已。那今天目标就直入主题用最简单的语言让大家了解神经网络是一个什么东西。

30850
来自专栏应兆康的专栏

建立一个单一数字的评估指标

16810
来自专栏奇点大数据

机器学习算法在自动驾驶汽车中扮演怎样的角色

随着电子控制单元传感器数据处理这项技术的继续发展,人们也越来越期待运用更优化的机器学习,来完成更多新挑战。未来的潜在应用场景包括:通过内外部传感器(包括激光雷达...

15710
来自专栏大数据挖掘DT机器学习

学了统计、算法,如何正确应用机器学习?

原文:http://blog.csdn.net/google19890102/article/details/40680687 学习了一段时间的机器学习算...

33590
来自专栏量子位

视觉目标检测和识别之过去,现在及可能

作者:李习华 知乎专栏:碧空的cv之旅 量子位 已获授权编辑发布 计算机视觉中目标检测、跟踪、识别是最基本的几个task,尤其又以检测最为重要和基础。同时基本上...

41670
来自专栏人工智能头条

在实践中正确应用机器学习的12条法则

26440
来自专栏新智元

【Bengio vs 谷歌】深度学习兄弟对决,神经网络泛化本质之争

【新智元导读】一场或许有关深度学习本质的争论正在火热进行中。去年底,MIT、DeepMind 和谷歌大脑合著的论文《理解深度学习需要重新思考泛化》引发热论。论文...

423120
来自专栏应兆康的专栏

23. 处理偏差和方差

13560
来自专栏专知

【重温经典】吴恩达机器学习课程学习笔记七:Logistic回归

【导读】前一段时间,专知内容组推出了春节充电系列:李宏毅2017机器学习课程学习笔记,反响热烈,由此可见,大家对人工智能、机器学习的系列课程非常感兴趣,近期,专...

54190

扫码关注云+社区

领取腾讯云代金券