Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, ..., N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
Output Specification:
For each pop sequence, print in one line "YES" if it is indeed a possible pop sequence of the stack, or "NO" if not.
Sample Input:
5 7 5 1 2 3 4 5 6 7 3 2 1 7 5 6 4 7 6 5 4 3 2 1 5 6 4 3 7 2 1 1 7 6 5 4 3 2
Sample Output:
YES NO NO YES NO
题目大意: 有一个大小为M的栈和一个大小为N的以1为首的升序序列,判断能否利用这个栈将该数组的顺序变成与输入数组相同的顺序,输入的数据有K组。例如:如果M = 5,N = 7,我们可以利用栈得到1,2,3,4,5,6,7,但是不能得到3,2,1,7,5,6,4。如果能得到输入的序列,则输出YES,否则输出NO。 思路: 可以将栈想做中转站,若想使序列从A到B,必须经过有限大的C,如图所示:
如果A[i]和B[j]相等并且C没有满,则判断A的下一位和B的下一位,如果A[i]和B[j]不相等并且C未满,则将A[i]囤积到C,直到C的最上面元素与B[j]相等,取出C的top,如此循环。
#include <cstdio> #include <stack> using namespace std; const int maxn = 1000; int main() { int m, n, k; int arr[maxn]; scanf("%d%d%d", &m, &n, &k); for(int i = 0; i < k; i++) { int A = 1, B = 0; int ok = 1; stack<int> s; for(int j = 0; j < n; j++) { scanf("%d", &arr[j]); } while(B < n) { if(A == arr[B] && s.size() < m) { A++; B++; } else if(!s.empty() && s.top() == arr[B]) { s.pop(); B++; } else if(A <= n && s.size() < m) { s.push(A); A++; } else { ok = 0; break; } } printf("%s\n", ok ? "YES" : "NO"); } return 0; }</span>
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句