前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CaffeLoss - FocalLossLayer

CaffeLoss - FocalLossLayer

作者头像
AIHGF
发布2019-02-18 14:57:50
5500
发布2019-02-18 14:57:50
举报
文章被收录于专栏:AIUAIAIUAI

原文: CaffeLoss - FocalLossLayer - AIUAI

Github - focal_loss_layer Focal Loss 论文理解及公式推导 - AIUAI

基于 SoftmaxWithLossLayer 实现的 FocalLossLayer.

主要涉及四个文件:

  • caffe.proto
  • focal_loss_layer.hpp
  • focal_loss_layer.cpp
  • focal_loss_layer.cu

1. 修改 caffe.proto 文件

caffe_root/src/caffe.proto 中添加如下内容:

代码语言:javascript
复制
// Add the next contents to message LayerParameter
message LayerParameter {
    optional FocalLossParameter focal_loss_param = 151; // select a id.
}

// Add the next contents to your caffe.proto
// Message that stores parameter used by FocalLossLayer
message FocalLossParameter {
    // loss = -alpha * (1 - pk)^gamma * ln(pk)
    // alpha is a parameter which scale the loss
    optional float alpha = 1 [default = 0.25];
    optional float gamma = 2 [default = 2.00];
}

2. 添加 focal_loss_layer.hpp 文件

focal_loss_layer.hpp 文件添加到 caffe_root/include/caffe/layers/

代码语言:javascript
复制
// focal_loss.hpp -- inplement of <<Focal Loss for Dense Object Detection>>
// modified from softmax_loss_layer.hpp
#ifndef CAFFE_FOCAL_LOSS_LAYER_HPP_
#define CAFFE_FOCAL_LOSS_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/loss_layer.hpp"
#include "caffe/layers/softmax_layer.hpp"

namespace caffe {

/**
 * @brief Computes the multinomial logistic loss for a one-of-many
 *        classification task, passing real-valued predictions through a
 *        softmax to get a probability distribution over classes.
 *
 * This layer should be preferred over separate
 * SoftmaxLayer + MultinomialLogisticLossLayer
 * as its gradient computation is more numerically stable.
 * At test time, this layer can be replaced simply by a SoftmaxLayer.
 *
 * @param bottom input Blob vector (length 2)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the predictions @f$ x @f$, a Blob with values in
 *      @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
 *      the @f$ K = CHW @f$ classes. This layer maps these scores to a
 *      probability distribution over classes using the softmax function
 *      @f$ \hat{p}_{nk} = \exp(x_{nk}) /
 *      \left[\sum_{k'} \exp(x_{nk'})\right] @f$ (see SoftmaxLayer).
 *   -# @f$ (N \times 1 \times 1 \times 1) @f$
 *      the labels @f$ l @f$, an integer-valued Blob with values
 *      @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
 *      indicating the correct class label among the @f$ K @f$ classes
 * @param top output Blob vector (length 1)
 *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
 *      the computed cross-entropy classification loss: @f$ E =
 *        \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n})
 *      @f$, for softmax output class probabilites @f$ \hat{p} @f$
 */
 // 继承自LossLayer
template <typename Dtype>
class FocalLossLayer : public LossLayer<Dtype> {
 public:
   /**
    * @param param provides LossParameter loss_param, with options:
    *  - ignore_label (optional)
    *    Specify a label value that should be ignored when computing the loss.
    *  - normalize (optional, default true)
    *    If true, the loss is normalized by the number of (nonignored) labels
    *    present; otherwise the loss is simply summed over spatial locations.
    */
  explicit FocalLossLayer(const LayerParameter& param)
      : LossLayer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "FocalLoss"; }
  virtual inline int ExactNumTopBlobs() const { return -1; }
  virtual inline int MinTopBlobs() const { return 1; }
  virtual inline int MaxTopBlobs() const { return 2; }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  /**
   * @brief Computes the softmax loss error gradient w.r.t. the predictions.
   *
   * Gradients cannot be computed with respect to the label inputs (bottom[1]),
   * so this method ignores bottom[1] and requires !propagate_down[1], crashing
   * if propagate_down[1] is set.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *      respect to the outputs
   *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
   *      This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
   *      as @f$ \lambda @f$ is the coefficient of this layer's output
   *      @f$\ell_i@f$ in the overall Net loss
   *      @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
   *      @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
   *      (*Assuming that this top Blob is not used as a bottom (input) by any
   *      other layer of the Net.)
   * @param propagate_down see Layer::Backward.
   *      propagate_down[1] must be false as we can't compute gradients with
   *      respect to the labels.
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the predictions @f$ x @f$; Backward computes diff
   *      @f$ \frac{\partial E}{\partial x} @f$
   *   -# @f$ (N \times 1 \times 1 \times 1) @f$
   *      the labels -- ignored as we can't compute their error gradients
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  /// Read the normalization mode parameter and compute the normalizer based
  /// on the blob size.  If normalization_mode is VALID, the count of valid
  /// outputs will be read from valid_count, unless it is -1 in which case
  /// all outputs are assumed to be valid.
  virtual Dtype get_normalizer(
      LossParameter_NormalizationMode normalization_mode, int valid_count);

  /// The internal SoftmaxLayer used to map predictions to a distribution.
  shared_ptr<Layer<Dtype> > softmax_layer_;
  /// prob stores the output probability predictions from the SoftmaxLayer.
  Blob<Dtype> prob_; 
  /// bottom vector holder used in call to the underlying SoftmaxLayer::Forward
  vector<Blob<Dtype>*> softmax_bottom_vec_;
  /// top vector holder used in call to the underlying SoftmaxLayer::Forward
  vector<Blob<Dtype>*> softmax_top_vec_;
  /// Whether to ignore instances with a certain label.
  bool has_ignore_label_;
  /// The label indicating that an instance should be ignored.
  int ignore_label_;
  /// How to normalize the output loss.
  LossParameter_NormalizationMode normalization_;
	
  int softmax_axis_, outer_num_, inner_num_;
  /// alpha_ and gamma_ factors are for Focal Loss
  Dtype alpha_, gamma_;
};

}  // namespace caffe

#endif  // CAFFE_FOCAL_LOSS_LAYER_HPP_

3. 添加 focal_loss_layer.cpp 文件

focal_loss_layer.cpp 添加到 caffe_root/src/caffe/layers/中:

代码语言:javascript
复制
#include <algorithm>
#include <cfloat>
#include <vector>

#include "caffe/layers/softmax_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/layers/focal_loss_layer.hpp"

namespace caffe {

template <typename Dtype>
void FocalLossLayer<Dtype>::LayerSetUp(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::LayerSetUp(bottom, top);
  LayerParameter softmax_param(this->layer_param_);
  softmax_param.set_type("Softmax");
  softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
  softmax_bottom_vec_.clear();
  softmax_bottom_vec_.push_back(bottom[0]);
  softmax_top_vec_.clear();
  softmax_top_vec_.push_back(&prob_);

  softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);

  has_ignore_label_ =
    this->layer_param_.loss_param().has_ignore_label();
  if (has_ignore_label_) {
    ignore_label_ = this->layer_param_.loss_param().ignore_label();
  }
  if (!this->layer_param_.loss_param().has_normalization() &&
      this->layer_param_.loss_param().has_normalize()) {
    normalization_ = this->layer_param_.loss_param().normalize() ?
                     LossParameter_NormalizationMode_VALID :
                     LossParameter_NormalizationMode_BATCH_SIZE;
  } else {
    normalization_ = this->layer_param_.loss_param().normalization();
    normalization_ = this->layer_param_.loss_param().normalization();
  }
  // get alpha and gamma
  alpha_ = this->layer_param_.focal_loss_param().alpha();
	gamma_ = this->layer_param_.focal_loss_param().gamma();
}

template <typename Dtype>
void FocalLossLayer<Dtype>::Reshape(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::Reshape(bottom, top);
  softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
  softmax_axis_ =
      bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis()); // classify at which axis
  outer_num_ = bottom[0]->count(0, softmax_axis_);
  inner_num_ = bottom[0]->count(softmax_axis_ + 1);
  CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
      << "Number of labels must match number of predictions; "
      << "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
      << "label count (number of labels) must be N*H*W, "
      << "with integer values in {0, 1, ..., C-1}.";
  if (top.size() >= 2) {
    // softmax output
    top[1]->ReshapeLike(*bottom[0]);
  }
}

template <typename Dtype>
Dtype FocalLossLayer<Dtype>::get_normalizer(
    LossParameter_NormalizationMode normalization_mode, int valid_count) {
  Dtype normalizer; 
  switch (normalization_mode) {
    case LossParameter_NormalizationMode_FULL:
      normalizer = Dtype(outer_num_ * inner_num_); 
      break;
    case LossParameter_NormalizationMode_VALID:
      if (valid_count == -1) {
        normalizer = Dtype(outer_num_ * inner_num_);
      } else {
        normalizer = Dtype(valid_count);			
      }
      break;
    case LossParameter_NormalizationMode_BATCH_SIZE:
      normalizer = Dtype(outer_num_);				
      break;
    case LossParameter_NormalizationMode_NONE:
      normalizer = Dtype(1);						
      break;
    default:
      LOG(FATAL) << "Unknown normalization mode: "
          << LossParameter_NormalizationMode_Name(normalization_mode);
  }
  // Some users will have no labels for some examples in order to 'turn off' a
  // particular loss in a multi-task setup. The max prevents NaNs in that case.
  return std::max(Dtype(1.0), normalizer);
}

template <typename Dtype>
void FocalLossLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  // The forward pass computes the softmax prob values.
  softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
  const Dtype* prob_data = prob_.cpu_data();
  const Dtype* label = bottom[1]->cpu_data();
  int dim = prob_.count() / outer_num_; // c * h * w
  int count = 0;
  Dtype loss = 0;
  for (int i = 0; i < outer_num_; ++i) {
    for (int j = 0; j < inner_num_; j++) {
      const int label_value = static_cast<int>(label[i * inner_num_ + j]);
      if (has_ignore_label_ && label_value == ignore_label_) {
        continue;
      }
      DCHECK_GE(label_value, 0);
      DCHECK_LT(label_value, prob_.shape(softmax_axis_));
	  // loss = -log(p)
	  const Dtype pk = prob_data[i * dim + label_value * inner_num_ + j];
	  loss -= alpha_ * powf(1 - pk, gamma_) * log(std::max(pk, Dtype(FLT_MIN)));
      ++count; // count elements.
    }// 
  }// per_num
  top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
  if (top.size() == 2) {
    top[1]->ShareData(prob_);
  }
}

template <typename Dtype>
void FocalLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
	// bottom[0]->cpu_data(), zk
  if (propagate_down[1]) {
    LOG(FATAL) << this->type()
               << " Layer cannot backpropagate to label inputs.";
  }
  if (propagate_down[0]) {
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const Dtype* prob_data = prob_.cpu_data();
	// if i != k,then diff = prob
    //caffe_copy(prob_.count(), prob_data, bottom_diff);
    const Dtype* label = bottom[1]->cpu_data();
	// const Dtype* bottom_data = bottom[0]->cpu_data();
    int dim = prob_.count() / outer_num_;
    int count = 0;
	int num_channel = bottom[0]->shape(softmax_axis_);
    for (int i = 0; i < outer_num_; ++i) {
      for (int j = 0; j < inner_num_; ++j) {
        const int label_value = static_cast<int>(label[i * inner_num_ + j]);
        if (has_ignore_label_ && label_value == ignore_label_) {
			  for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
				bottom_diff[i * dim + c * inner_num_ + j] = 0;
			  }
        } else {
			++count;
			int c = 0;
			const Dtype pk = std::max(prob_data[i * dim + label_value * inner_num_ + j], Dtype(FLT_MIN));
			for (c = 0; c < label_value; ++c) {
				const Dtype pj = std::max(prob_data[i * dim + c * inner_num_ + j], Dtype(FLT_MIN));
				bottom_diff[i * dim + c * inner_num_ + j] = Dtype(-1 * alpha_ * (gamma_ * pow(1 - pk, gamma_ - 1) * pk * pj * log(pk) - pow(1 - pk, gamma_) * pj)); // j != k
			} // per_channel
			bottom_diff[i * dim + label_value * inner_num_ + j] = Dtype (-1 * alpha_ * (-1 * gamma_ * powf(1 - pk, gamma_) * pk * log(pk) + powf(1 - pk, gamma_ + 1)));	// j = k
			c++;
			for ( ; c < num_channel; ++c) {
				const Dtype pj = std::max(prob_data[i * dim + c * inner_num_ + j], Dtype(FLT_MIN));
				bottom_diff[i * dim + c * inner_num_ + j] = Dtype(-1 * alpha_ * (gamma_ * pow(1 - pk, gamma_ - 1) * pk * pj * log(pk) - pow(1 - pk, gamma_) * pj)); // j != k
			} // per_channel
        }
      }// per_h_w
    }// per_num
    // Scale gradient
    Dtype loss_weight = top[0]->cpu_diff()[0] /
                        get_normalizer(normalization_, count);
    caffe_scal(prob_.count(), loss_weight, bottom_diff);
  }
}

#ifdef CPU_ONLY
STUB_GPU(FocalLossLayer);
#endif

INSTANTIATE_CLASS(FocalLossLayer);
REGISTER_LAYER_CLASS(FocalLoss);

}  // namespace caffe

4. 添加 focal_loss_layer.cu 文件

focal_loss_layer.cu 文件添加到路径 caffe_root/src/caffe/layers/ 中:

代码语言:javascript
复制
#include <algorithm>
#include <cfloat>
#include <vector>

#include "caffe/layers/focal_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {
	template <typename Dtype>
	__global__ void FocalLossForwardGPU(const int nthreads,
				const Dtype * prob_data, const Dtype * label, Dtype* loss,
				const int num, const int dim, const int spatial_dim,
				const bool has_ignore_label_, const int ignore_label_,
				Dtype * counts, const Dtype alpha_, const Dtype gamma_) {
		CUDA_KERNEL_LOOP(index, nthreads) {
			const int n = index / spatial_dim; 
			const int s = index % spatial_dim; 
			const int label_value = static_cast<int>(label[n * spatial_dim + s]);
			if (has_ignore_label_ && label_value == ignore_label_) {
				loss[index] = 0;
				counts[index] = 0;
			} else {
				const Dtype pk = max(prob_data[n * dim + label_value * spatial_dim + s], Dtype(FLT_MIN));
				loss[index] = -1 * alpha_ * powf(1 - pk, gamma_) * log(pk);
				counts[index] = 1;
			}
		}
	}
	
	template <typename Dtype>
	void FocalLossLayer<Dtype>::Forward_gpu(
		const vector<Blob<Dtype> *> & bottom, const vector<Blob<Dtype> *> & top) {
		softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
		const Dtype * prob_data = prob_.gpu_data();
		const Dtype * label = bottom[1]->gpu_data();
		const int dim = prob_.count() / outer_num_;
		const int nthreads = outer_num_ * inner_num_;
		
		Dtype * loss_data = bottom[0]->mutable_gpu_diff();
		Dtype * counts = prob_.mutable_gpu_diff();
		FocalLossForwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
			CAFFE_CUDA_NUM_THREADS>>>(nthreads, prob_data, label, loss_data,
			outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts, alpha_, gamma_);
		Dtype loss;
		caffe_gpu_asum(nthreads, loss_data, &loss);
		Dtype valid_count = -1;
		if (normalization_ == LossParameter_NormalizationMode_VALID &&
			has_ignore_label_) {
			caffe_gpu_asum(nthreads, counts, & valid_count);
		}
		top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_,
																valid_count);
		if (2 == top.size()) {
			top[1]->ShareData(prob_);
		}
	}
	
	template <typename Dtype>
	__global__ void FocalLossBackwardGPU(const int nthreads, const Dtype * prob_data,
				const Dtype * label, Dtype * bottom_diff, const int num, const int dim,
				const int spatial_dim, const bool has_ignore_label_,
				const int ignore_label_, Dtype * counts, const Dtype alpha_, const Dtype gamma_) {
		const int channels = dim / spatial_dim;
		CUDA_KERNEL_LOOP(index, nthreads) {
			const int n = index / spatial_dim;
			const int s = index % spatial_dim;
			const int label_value = static_cast<int>(label[n * spatial_dim + s]);
			if (has_ignore_label_ && label_value == ignore_label_) {
				for (int c = 0; c < channels; ++c) {
					bottom_diff[n * dim + c * spatial_dim + s] = 0;
				}
				counts[index] = 0;
			} else {
				int c = 0;
				const Dtype pk = max(prob_data[n * dim + label_value * spatial_dim + s], Dtype(FLT_MIN));
				for (c = 0; c < label_value; ++c) {
					const Dtype pj = max(prob_data[n * dim + c * spatial_dim + s], Dtype(FLT_MIN));
					bottom_diff[n * dim + c * spatial_dim + s] = Dtype(
						-1 * alpha_ * (gamma_ * pow(1 - pk, gamma_ - 1) * pk * pj * log(pk) - pow(1 - pk, gamma_) * pj));
				}
				bottom_diff[n * dim + c * spatial_dim + s] = Dtype(
					-1 * alpha_ * (-1 * gamma_ * pow(1 - pk, gamma_) * pk * log(pk) + pow(1 - pk, gamma_ + 1)));
				c++;
				for ( ; c < channels; ++c) {
					const Dtype pj = max(prob_data[n * dim + c * spatial_dim + s], Dtype(FLT_MIN));
					bottom_diff[n * dim + c * spatial_dim + s] = Dtype(
						-1 * alpha_ * (gamma_ * pow(1 - pk, gamma_ - 1) * pk * pj * log(pk) - pow(1 - pk, gamma_) * pj));
				}
				counts[index] = 1;
			}
		}
	}
	
	template <typename Dtype>
	void FocalLossLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype> *> & top,
		const vector<bool>& propagate_down, const vector<Blob<Dtype> *> & bottom) {
		if (propagate_down[1]) {
			LOG(FATAL) << this->type()
						<< " Layer cannot backpropagate to label inputs.";
		}
		if (propagate_down[0]) {
			Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
			const Dtype* prob_data = prob_.gpu_data();
			const Dtype* top_data = top[0]->gpu_data();
			const Dtype* label = bottom[1]->gpu_data();
			const int dim = prob_.count() / outer_num_;
			const int nthreads = outer_num_ * inner_num_;
			// Since this memory is nerver used for anything else,
			// we use to to avoid allocating new GPU memory 
			Dtype* counts = prob_.mutable_gpu_diff();
			// NOLINT_NEXT_LINE(whitespace/operators)
			FocalLossBackwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
				CAFFE_CUDA_NUM_THREADS>>>(nthreads, prob_data, label, bottom_diff,
				outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts,
				alpha_, gamma_);
			Dtype valid_count = -1;
			// Only launch another CUDA kernel if we actually need the count of valid
			// outputs.
			if (normalization_ == LossParameter_NormalizationMode_VALID &&
				has_ignore_label_) {
				caffe_gpu_asum(nthreads, counts, & valid_count);
			}
			const Dtype loss_weight = top[0]->cpu_diff()[0] / 
									get_normalizer(normalization_, valid_count);
			caffe_gpu_scal(prob_.count(), loss_weight, bottom_diff);
		}
	}
	
	INSTANTIATE_LAYER_GPU_FUNCS(FocalLossLayer);
} // namespace caffe

5. FocalLossLayer 用法

在 caffe 编译完成后,FocalLossLayer 在 prototxt文件中的用法为:

代码语言:javascript
复制
layer {
    name: "focal_loss"
    type: "FocalLoss"
    bottom: "conv_cls"
    bottom: "label"
    top: "loss"
    include {
        phase: TRAIN
    }
    loss_param {
        ignore_label: 255
    }
    focal_loss_param {
        alpha: 0.25
        gamma: 2.00
    }
}
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年10月31日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 修改 caffe.proto 文件
  • 2. 添加 focal_loss_layer.hpp 文件
  • 3. 添加 focal_loss_layer.cpp 文件
  • 4. 添加 focal_loss_layer.cu 文件
  • 5. FocalLossLayer 用法
相关产品与服务
文件存储
文件存储(Cloud File Storage,CFS)为您提供安全可靠、可扩展的共享文件存储服务。文件存储可与腾讯云服务器、容器服务、批量计算等服务搭配使用,为多个计算节点提供容量和性能可弹性扩展的高性能共享存储。腾讯云文件存储的管理界面简单、易使用,可实现对现有应用的无缝集成;按实际用量付费,为您节约成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档