专栏首页数据结构与算法loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

题意

题目链接

Sol

质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案

那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数

\(f[i + 1][(j + k) \% p] += f[i][j]\)

矩乘优化一下。

#include<bits/stdc++.h>
#define LL long long 
using namespace std;
const int MAXN = 2e7 + 10, mod = 20170408, SS = 1e5 + 10;
LL GG = 1e17;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
template<typename A, typename B> inline int add(A x, B y) {
    if(x + y < 0) return x + y + mod;
    else return x + y >= mod ? x + y - mod : x + y;
}
template<typename A, typename B> inline void add2(A &x, B y) {
    if(x + y < 0) x = x + y + mod;
    else x = (x + y >= mod ? x + y - mod : x + y);
}
template<typename A, typename B> inline int mul(A x, B y) {
    return 1ll * x * y % mod;
}
int N, M, p, Lim;//1 - M, ºÍÊÇpµÄ±¶Êý 
int f[SS], vis[MAXN], mu[MAXN], prime[MAXN], tot, cnt, num[SS], tim[SS], val[SS];
struct Ma {
    int m[201][201];
    Ma() {
        memset(m, 0, sizeof(m));
    }
    void init() {
        for(int i = 0; i <= Lim; i++) m[i][i] = 1;
    }
    void clear() {
        memset(m, 0, sizeof(m));
    }
    void print() {
        for(int i = 0; i <= Lim; i++, puts(""))
            for(int j = 0; j <= Lim; j++)
                printf("%d ", m[i][j]);
    }
    Ma operator * (const Ma &rhs) const {
        Ma ans = {};
        for(int i = 0; i <= Lim; i++)
            for(int j = 0; j <= Lim; j++) {
                __int128 tmp = 0;
                for(int k = 0; k <= Lim; k++) {
                    tmp += 1ll * m[i][k] * rhs.m[k][j];     
                }
                ans.m[i][j] = tmp % mod;
            }
        return ans;
    }
}g;
Ma MatrixPow(Ma a, int p) {
    Ma base; base.init();
    while(p) {
        if(p & 1) base = base * a;
        a = a * a; p >>= 1;
    }
    return base;
}
void sieve(int N) {
    vis[1] = 1; mu[1] = 1; 
    for(int i = 2; i <= N; i++) {
        if(!vis[i]) prime[++tot] = i, mu[i] = -1;
        for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
            vis[i * prime[j]] = 1;
            if(i % prime[j]) mu[i * prime[j]] = -mu[i];
            else {mu[i * prime[j]] = 0; break;}
        }
    }
    for(int i = 1; i <= N; i++) 
        if(vis[i]) num[i % p]++;
}

int solve1() {//ºöÊÓÖÊÊýµÄÏÞÖÆ
    for(int i = 1; i <= M; i++) f[i % p]++;
    for(int j = 0; j < p; j++) {
        memset(tim, 0, sizeof(tim));
        memset(val, 0, sizeof(val));
        int step = M;
        for(int k = 1; k <= M; k++) {
            int nxt = (j + k) % p;
            if(tim[nxt]) {step = k - 1; break;}
            tim[nxt] = 1; val[nxt]++;
        }
        if(step) for(int k = 0; k <= Lim; k++) g.m[k][j] = M / step * val[k];
        for(int k = M / step * step + 1; k <= M; k++) g.m[(j + k) % p][j]++;
    }
    Ma ans = MatrixPow(g, N - 1);
    int out = 0;
    for(int i = 0; i <= Lim; i++) add2(out, mul(ans.m[0][i], f[i]));
    return out;
}
int solve2() {//ÎÞÖÊÊý 
    memset(f, 0, sizeof(f));
    g.clear();
    for(int i = 1; i <= M; i++) f[i % p] += (vis[i]);
    for(int j = 0; j < p; j++)
        for(int k = 0; k < p; k++)
            g.m[(j + k) % p][j] += num[k];
            
    Ma ans = MatrixPow(g, N - 1);
    int out = 0;
    for(int i = 0; i <= Lim; i++) 
        add2(out, mul(ans.m[0][i], f[i]));
    return out;
}
int main() {
    N = read(); M = read(); Lim = p = read();
    sieve(M);
    cout << (solve1() - solve2() + mod) % mod;
    return 0;
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • HDU4609 3-idiots(生成函数)

    但是如果直接算合法的方案的话会出现一点问题。我们在算的时候维护了一个后缀和表示乘起来大于等于这个数的方案。我们要求的方案需要满足i < j < k,但是这样计算...

    attack
  • 1250 Fibonacci数列

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果 题目描述 Description 定义:f0=...

    attack
  • 1031 质数环

    1031 质数环  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解 题目描述 Description 一个大小为N(...

    attack
  • 牛客寒假算法基础集训营4 F. Applese的QQ群(二分+拓扑排序+dfs)

    题目链接:https://ac.nowcoder.com/acm/contest/330/F

    Ch_Zaqdt
  • 面8-15K可能会遇到的面试题

    23号也就是周一约了3家面试,上午面了一家,下午面了一家,推掉了第三家的面试,下面说说面试内容,第一家共有6道笔试题,第二家无笔试题,面试官问了数据库索引相关内...

    框架师
  • 1031 质数环

    1031 质数环  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解 题目描述 Description 一个大小为N(...

    attack
  • 「c++小学期」实验题目及代码

    面向对象编程的C++,和平时做题用的C++还是有差距的。实验的题目都是小题目,就都做一下吧。

    饶文津
  • 南京网络预选赛 The Preliminary Contest for ICPC Asia Nanjing 2019 H. Holy Grail 多源最短路

    用户2965768
  • c++ 学习笔记(二)

    type 是指针的基类型,它必须是一个有效的 C++ 数据类型,var-name 是指针变量的名称

    码缘
  • 2038:[2009国家集训队]小Z的袜子(hose)

    用户2965768

扫码关注云+社区

领取腾讯云代金券