Orz yyb
一开始想的是直接设f_i表示i个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到。。。
正解是先设g(n)表示n个点的无向图个数,这个方案是2^{\frac{i(i-1)}{2}}(也就是考虑每条边选不选)
考虑如何得到g
g(n) = \sum_{i=0}^n C_{n-1}^{i-1}f(i) g(n-i)
直接将2^{\frac{n(n-1)}{2}}带入然后化简一下可以得到这个式子
\frac{2^{C_n^2}}{(n-1)!} = \sum_{i=1}^n \frac{f(i)}{(i-1)!} \frac{2^{C_{n-i}^2}}{(n-i)!}
然后就可以多项式求逆啦。
#include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define LL long long #define ull unsigned long long #define Fin(x) {freopen(#x".in","r",stdin);} #define Fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int MAXN = 2e6 + 10, INF = 1e9 + 1; const double eps = 1e-9, pi = acos(-1); inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, a[MAXN], b[MAXN], c[MAXN], d[MAXN], fac[MAXN], ifac[MAXN]; namespace Poly { int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], lim, INV2; const int G = 3, mod = 1004535809, mod2 = 1004535808; template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;} template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);} template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;} template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;} int fp(int a, int p, int P = mod) { int base = 1; for(; p > 0; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base * a % P; return base; } int inv(int x) { return fp(x, mod - 2); } int GetLen(int x) { int lim = 1; while(lim <= x) lim <<= 1; return lim; } int GetOrigin(int x) {//¼ÆËãÔ¸ù static int q[MAXN]; int tot = 0, tp = x - 1; for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;} if(tp > 1) q[++tot] = tp; for(int i = 2, j; i <= x - 1; i++) { for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break; if(j == tot + 1) return i; } return -1; } void Init(/*int P,*/ int Lim) { INV2 = fp(2, mod - 2); for(int i = 1; i <= Lim; i++) GPow[i] = fp(G, (mod - 1) / i); } void NTT(int *A, int lim, int opt) { int len = 0; for(int N = 1; N < lim; N <<= 1) ++len; for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1)); for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]); for(int mid = 1; mid < lim; mid <<= 1) { int Wn = GPow[mid << 1]; for(int i = 0; i < lim; i += (mid << 1)) { for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) { int x = A[i + j], y = mul(w, A[i + j + mid]); A[i + j] = add(x, y), A[i + j + mid] = add(x, -y); } } } if(opt == -1) { reverse(A + 1, A + lim); int Inv = fp(lim, mod - 2); for(int i = 0; i <= lim; i++) mul2(A[i], Inv); } } void Mul(int *a, int *b, int N, int M) { memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); int lim = 1, len = 0; while(lim <= N + M) len++, lim <<= 1; for(int i = 0; i <= N; i++) A[i] = a[i]; for(int i = 0; i <= M; i++) B[i] = b[i]; NTT(A, lim, 1); NTT(B, lim, 1); for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]); NTT(B, lim, -1); for(int i = 0; i <= N + M; i++) b[i] = B[i]; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); } void Inv(int *a, int *b, int len) {//B1 = 2B - A1 * B^2 if(len == 1) {b[0] = fp(a[0], mod - 2); return ;} Inv(a, b, len >> 1); for(int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i]; NTT(A, len << 1, 1); NTT(B, len << 1, 1); for(int i = 0; i < (len << 1); i++) mul2(A[i], mul(B[i], B[i])); NTT(A, len << 1, -1); for(int i = 0; i < len; i++) add2(b[i], add(b[i], -A[i])); for(int i = 0; i < (len << 1); i++) A[i] = B[i] = 0; } void Dao(int *a, int *b, int len) { for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0; } void Ji(int *a, int *b, int len) { for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0; } void Ln(int *a, int *b, int len) {//G(A) = \frac{A}{A'} qiudao zhihou jifen static int A[MAXN], B[MAXN]; Dao(a, A, len); Inv(a, B, len); NTT(A, len << 1, 1); NTT(B, len << 1, 1); for(int i = 0; i < (len << 1); i++) B[i] = mul(A[i], B[i]); NTT(B, len << 1, -1); Ji(B, b, len << 1); memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); } void Exp(int *a, int *b, int len) {//F(x) = F_0 (1 - lnF_0 + A) but code ..why.... if(len == 1) return (void) (b[0] = 1); Exp(a, b, len >> 1); Ln(b, C, len); C[0] = add(a[0] + 1, -C[0]); for(int i = 1; i < len; i++) C[i] = add(a[i], -C[i]); NTT(C, len << 1, 1); NTT(b, len << 1, 1); for(int i = 0; i < (len << 1); i++) mul2(b[i], C[i]); NTT(b, len << 1, -1); for(int i = len; i < (len << 1); i++) C[i] = b[i] = 0; } void Sqrt(int *a, int *b, int len) { static int B[MAXN]; Ln(a, B, len); for(int i = 0; i < len; i++) B[i] = mul(B[i], INV2); Exp(B, b, len); } }; using namespace Poly; signed main() { N = read(); int Lim = GetLen(N); Init(4 * Lim); fac[0] = 1; for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]); ifac[N] = fp(fac[N], mod - 2); for(int i = N; i >= 1; i--) ifac[i - 1] = mul(i, ifac[i]); for(int i = N; i >= 1; i--) { int tmp; if(i & 1) tmp = fp(2, 1ll * ((i - 1) / 2) * i % mod2); else tmp = fp(2, 1ll * (i / 2) * (i - 1) % mod2); a[i] = mul(tmp, ifac[i - 1]), b[i] = mul(tmp, ifac[i]); } b[0] = 1; Inv(b, c, Lim); Mul(a, c, Lim, Lim); cout << mul(c[N], fac[N - 1]); return 0; }
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句