# 洛谷P5245 【模板】多项式快速幂(多项式ln 多项式exp)

## Sol

$$B(x) = \exp(K\ln(A(x)))$$

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4e5 + 10, INF = 1e9 + 10, INV2 = 499122177;
const double eps = 1e-9, pi = acos(-1);
const int G = 3, mod = 998244353;
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (1ll * x * 10 + c - '0') % mod, c = getchar();
return x * f;
}
int N, K, a[MAXN], b[MAXN];
namespace Poly {
int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], lim;

template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
int fp(int a, int p, int P = mod) {
int base = 1;
for(; p; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base *  a % P;
return base;
}
int GetLen(int x) {
int lim = 1;
while(lim <= x) lim <<= 1;
return lim;
}
int GetLen2(int x) {
int lim = 1;
while(lim <= x) lim <<= 1;
return lim;
}
int GetOrigin(int x) {//¼ÆËãÔ­¸ù
static int q[MAXN]; int tot = 0, tp = x - 1;
for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
if(tp > 1) q[++tot] = tp;
for(int i = 2, j; i <= x - 1; i++) {
for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
if(j == tot + 1) return i;
}
}
void Init(int Lim) {
for(int i = 1; i <= Lim; i++) GPow[i] = fp(G, (mod - 1) / i);
}
void NTT(int *A, int lim, int opt) {
int len = 0; for(int N = 1; N < lim; N <<= 1) ++len;
for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
int Wn = GPow[mid << 1];
for(int i = 0; i < lim; i += (mid << 1)) {
for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) {
int x = A[i + j], y = mul(w, A[i + j + mid]);
A[i + j] = add(x, y), A[i + j + mid] = add(x, -y);
}
}
}
if(opt == -1) {
reverse(A + 1, A + lim);
int Inv = fp(lim, mod - 2);
for(int i = 0; i <= lim; i++) mul2(A[i], Inv);
}
}
void Mul(int *a, int *b, int N, int M) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
int lim = 1, len = 0;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i <= N; i++) A[i] = a[i];
for(int i = 0; i <= M; i++) B[i] = b[i];
NTT(A, lim, 1); NTT(B, lim, 1);
for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]);
NTT(B, lim, -1);
for(int i = 0; i <= N + M; i++) b[i] = B[i];
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Inv(int *a, int *b, int len) {//B1 = 2B - A1 * B^2
if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
Inv(a, b, len >> 1);
for(int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i];
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(A[i], mul(B[i], B[i]));
NTT(A, len << 1, -1);
for(int i = 0; i < (len << 1); i++) A[i] = B[i] = 0;
}
void Dao(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
}
void Ji(int *a, int *b, int len) {
for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
}
void Ln(int *a, int *b, int len) {//G(A) = \frac{A}{A'} qiudao zhihou jifen
static int A[MAXN], B[MAXN];
Dao(a, A, len);
Inv(a, B, len);
NTT(A, len << 1, 1); NTT(B, len << 1, 1);
for(int i = 0; i < (len << 1); i++) B[i] = mul(A[i], B[i]);
NTT(B, len << 1, -1);
Ji(B, b, len << 1);
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
}
void Exp(int *a, int *b, int len) {//F(x) = F_0 (1 - lnF_0 + A) but code ..why....
if(len == 1) return (void) (b[0] = 1);
Exp(a, b, len >> 1); Ln(b, C, len);
C[0] = add(a[0] + 1, -C[0]);
for(int i = 1; i < len; i++) C[i] = add(a[i], -C[i]);
NTT(C, len << 1, 1); NTT(b, len << 1, 1);
for(int i = 0; i < (len << 1); i++) mul2(b[i], C[i]);
NTT(b, len << 1, -1);
for(int i = len; i < (len << 1); i++) C[i] = b[i] = 0;
}
void Sqrt(int *a, int *b, int len) {
static int B[MAXN];
Ln(a, B, len);
for(int i = 0; i < len; i++) B[i] = mul(B[i], INV2);
Exp(B, b, len);
}
void Div(int *F, int *G, int *Q, int *R, int N, int M) {//F(n) = G(m) * Q(n - m + 1) + R(m)
static int Ginv[MAXN]; memset(Ginv, 0, sizeof(Ginv));
reverse(F, F + N + 1); reverse(G, G + M + 1);
Inv(G, Ginv, GetLen2(N - M));//why not M
Mul(F, Ginv, N - M, N - M);
for(int i = 0; i <= N - M; i++) Q[i] = Ginv[i];
reverse(Q, Q + N - M + 1);
reverse(F, F + N + 1); reverse(G, G + M + 1);
Mul(Q, G, N - M, M);
for(int i = 0; i < M; i++) R[i] = add(F[i], -G[i]);
}
void Pow(int *a, int *b, int P, int N, int len) {
static int tx[MAXN], ty[MAXN]; memset(tx, 0, sizeof(tx)); memset(ty, 0, sizeof(ty));
Ln(a, tx, len);
for(int i = 0; i < N; i++) ty[i] = mul(P, tx[i]);
Exp(ty, b, len);
}
};
using namespace Poly;
signed main() {
Init(4 * N);
for(int i = 0; i < N; i++) a[i] = read();
Pow(a, b, K, N, GetLen(N));
for(int i = 0; i < N; i++) cout << b[i] << ' ';
return 0;
}
/*
4 1242412412412412412421421
1 1 0 0

*/

0 条评论

• ### BZOJ5249: [2018多省省队联测]IIIDX(线段树 贪心)

不难发现题目给出的是一个树，其中$$\frac{i}{K}$$是$$i$$的父亲节点

• ### cf1037D. Valid BFS?(BFS?)

可以这样想，在BFS序中较早出现的一定是先访问的，所以把每个点连出去的边按出现的前后顺序排个序

• ### loj#6436. 「PKUSC2018」神仙的游戏(生成函数)

我们考虑枚举一个长度len。有一个结论是如果我们按N - len的余数分类，若同一组内的全为0或全为1(?不算)，那么存在一个长度为len的border。

• ### 一遍记住Java常用的八种排序算法与代码实现

(如果每次比较都交换，那么就是交换排序；如果每次比较完一个循环再交换，就是简单选择排序。)

• ### 你必须知道的指针基础-7.void指针与函数指针

void *表示一个“不知道类型”的指针，也就不知道从这个指针地址开始多少字节为一个数据。和用int表示指针异曲同工，只是更明确是“指针”。

• ### ICPC Asia Shenyang 2019 Dudu's maze

版权声明：本文为博主原创文章，遵循 CC 4.0 BY-SA 版权协议，转载请附上原文出处链接和本声明。

• ### LeetCode 第 210 场周赛 解题报告

那么在遍历过程中，栈中元素数量的最大值即为答案。栈中的(可以理解为还没遍历到匹配的)，即那些嵌套的(。

• ### LeetCode 164. Maximum Gap (排序)

题解：首先，当然我们可以用快排，排完序之后，遍历一遍数组，就能得到答案了。但是快速排序的效率是O(n* logn)，不是题目要求的线性效率，也就是O(n)的效率...

• ### 图论--拓扑排序--判断一个图能否被拓扑排序

拓扑排序的实现条件，以及结合应用场景，我们都能得到拓扑排序适用于DAG图（Directed Acyclic Graph简称DAG）有向无环图， 根据关系我们能得...

• ### Educational Codeforces Round 67 (Rated for Div. 2) A~E 贪心，构造，线段树，树的子树

Educational Codeforces Round 67 (Rated for Div. 2)