专栏首页阿dai_linuxBest Practices for Speeding Up Your Web Site(网站优化)

Best Practices for Speeding Up Your Web Site(网站优化)

Best Practices for Speeding Up Your Web Site

Minimize HTTP Requests tag: content

80% of the end-user response time is spent on the front-end. Most of this time is tied up in downloading all the components in the page: images, stylesheets, scripts, Flash, etc. Reducing the number of components in turn reduces the number of HTTP requests required to render the page. This is the key to faster pages.

One way to reduce the number of components in the page is to simplify the page's design. But is there a way to build pages with richer content while also achieving fast response times? Here are some techniques for reducing the number of HTTP requests, while still supporting rich page designs.

  • Combined files are a way to reduce the number of HTTP requests by combining all scripts into a single script, and similarly combining all CSS into a single stylesheet. Combining files is more challenging when the scripts and stylesheets vary from page to page, but making this part of your release process improves response times.
  • CSS Sprites are the preferred method for reducing the number of image requests. Combine your background images into a single image and use the CSS background-image and background-position properties to display the desired image segment.
  • Image maps combine multiple images into a single image. The overall size is about the same, but reducing the number of HTTP requests speeds up the page. Image maps only work if the images are contiguous in the page, such as a navigation bar. Defining the coordinates of image maps can be tedious and error prone. Using image maps for navigation is not accessible too, so it's not recommended.
  • Inline images use the data: URL scheme to embed the image data in the actual page. This can increase the size of your HTML document. Combining inline images into your (cached) stylesheets is a way to reduce HTTP requests and avoid increasing the size of your pages. Inline images are not yet supported across all major browsers.
  • Reducing the number of HTTP requests in your page is the place to start. This is the most important guideline for improving performance for first time visitors. As described in Tenni Theurer's blog post Browser Cache Usage - Exposed!, 40-60% of daily visitors to your site come in with an empty cache. Making your page fast for these first time visitors is key to a better user experience.

Use a Content Delivery Network(CDN)

tag: server

The user's proximity to your web server has an impact on response times. Deploying your content across multiple, geographically dispersed servers will make your pages load faster from the user's perspective. But where should you start?

As a first step to implementing geographically dispersed content, don't attempt to redesign your web application to work in a distributed architecture. Depending on the application, changing the architecture could include daunting tasks such as synchronizing session state and replicating database transactions across server locations. Attempts to reduce the distance between users and your content could be delayed by, or never pass, this application architecture step.

Remember that 80-90% of the end-user response time is spent downloading all the components in the page: images, stylesheets, scripts, Flash, etc. This is the Performance Golden Rule. Rather than starting with the difficult task of redesigning your application architecture, it's better to first disperse your static content. This not only achieves a bigger reduction in response times, but it's easier thanks to content delivery networks.

A content delivery network (CDN) is a collection of web servers distributed across multiple locations to deliver content more efficiently to users. The server selected for delivering content to a specific user is typically based on a measure of network proximity. For example, the server with the fewest network hops or the server with the quickest response time is chosen.

Some large Internet companies own their own CDN, but it's cost-effective to use a CDN service provider, such as Akamai Technologies, EdgeCast, or level3. For start-up companies and private web sites, the cost of a CDN service can be prohibitive, but as your target audience grows larger and becomes more global, a CDN is necessary to achieve fast response times. At Yahoo!, properties that moved static content off their application web servers to a CDN (both 3rd party as mentioned above as well as Yahoo’s own CDN) improved end-user response times by 20% or more. Switching to a CDN is a relatively easy code change that will dramatically improve the speed of your web site.

Add an Expires or a Cache-Control Header

tag: server

There are two aspects to this rule:

For static components: implement "Never expire" policy by setting far future Expires header For dynamic components: use an appropriate Cache-Control header to help the browser with conditional requests

Web page designs are getting richer and richer, which means more scripts, stylesheets, images, and Flash in the page. A first-time visitor to your page may have to make several HTTP requests, but by using the Expires header you make those components cacheable. This avoids unnecessary HTTP requests on subsequent page views. Expires headers are most often used with images, but they should be used on all components including scripts, stylesheets, and Flash components.

Browsers (and proxies) use a cache to reduce the number and size of HTTP requests, making web pages load faster. A web server uses the Expires header in the HTTP response to tell the client how long a component can be cached. This is a far future Expires header, telling the browser that this response won't be stale until April 15, 2010.

  Expires: Thu, 15 Apr 2010 20:00:00 GMT

If your server is Apache, use the ExpiresDefault directive to set an expiration date relative to the current date. This example of the ExpiresDefault directive sets the Expires date 10 years out from the time of the request.

  ExpiresDefault "access plus 10 years"

Keep in mind, if you use a far future Expires header you have to change the component's filename whenever the component changes. At Yahoo! we often make this step part of the build process: a version number is embedded in the component's filename, for example, yahoo_2.0.6.js.

Using a far future Expires header affects page views only after a user has already visited your site. It has no effect on the number of HTTP requests when a user visits your site for the first time and the browser's cache is empty. Therefore the impact of this performance improvement depends on how often users hit your pages with a primed cache. (A "primed cache" already contains all of the components in the page.) We measured this at Yahoo! and found the number of page views with a primed cache is 75-85%. By using a far future Expires header, you increase the number of components that are cached by the browser and re-used on subsequent page views without sending a single byte over the user's Internet connection.

Gzip Components

tag: server

The time it takes to transfer an HTTP request and response across the network can be significantly reduced by decisions made by front-end engineers. It's true that the end-user's bandwidth speed, Internet service provider, proximity to peering exchange points, etc. are beyond the control of the development team. But there are other variables that affect response times. Compression reduces response times by reducing the size of the HTTP response.

Starting with HTTP/1.1, web clients indicate support for compression with the Accept-Encoding header in the HTTP request.

  Accept-Encoding: gzip, deflate

If the web server sees this header in the request, it may compress the response using one of the methods listed by the client. The web server notifies the web client of this via the Content-Encoding header in the response.

  Content-Encoding: gzip

Gzip is the most popular and effective compression method at this time. It was developed by the GNU project and standardized by RFC 1952. The only other compression format you're likely to see is deflate, but it's less effective and less popular.

Gzipping generally reduces the response size by about 70%. Approximately 90% of today's Internet traffic travels through browsers that claim to support gzip. If you use Apache, the module configuring gzip depends on your version: Apache 1.3 uses mod_gzip while Apache 2.x uses mod_deflate.

There are known issues with browsers and proxies that may cause a mismatch in what the browser expects and what it receives with regard to compressed content. Fortunately, these edge cases are dwindling as the use of older browsers drops off. The Apache modules help out by adding appropriate Vary response headers automatically.

Servers choose what to gzip based on file type, but are typically too limited in what they decide to compress. Most web sites gzip their HTML documents. It's also worthwhile to gzip your scripts and stylesheets, but many web sites miss this opportunity. In fact, it's worthwhile to compress any text response including XML and JSON. Image and PDF files should not be gzipped because they are already compressed. Trying to gzip them not only wastes CPU but can potentially increase file sizes.

Gzipping as many file types as possible is an easy way to reduce page weight and accelerate the user experience.

Put Stylesheets at the Top

tag: css

While researching performance at Yahoo!, we discovered that moving stylesheets to the document HEAD makes pages appear to be loading faster. This is because putting stylesheets in the HEAD allows the page to render progressively.

Front-end engineers that care about performance want a page to load progressively; that is, we want the browser to display whatever content it has as soon as possible. This is especially important for pages with a lot of content and for users on slower Internet connections. The importance of giving users visual feedback, such as progress indicators, has been well researched and documented. In our case the HTML page is the progress indicator! When the browser loads the page progressively the header, the navigation bar, the logo at the top, etc. all serve as visual feedback for the user who is waiting for the page. This improves the overall user experience.

The problem with putting stylesheets near the bottom of the document is that it prohibits progressive rendering in many browsers, including Internet Explorer. These browsers block rendering to avoid having to redraw elements of the page if their styles change. The user is stuck viewing a blank white page.

The HTML specification clearly states that stylesheets are to be included in the HEAD of the page: "Unlike A, [LINK] may only appear in the HEAD section of a document, although it may appear any number of times." Neither of the alternatives, the blank white screen or flash of unstyled content, are worth the risk. The optimal solution is to follow the HTML specification and load your stylesheets in the document HEAD.

Put Scripts at the Bottom

tag: javascript

The problem caused by scripts is that they block parallel downloads. The HTTP/1.1 specification suggests that browsers download no more than two components in parallel per hostname. If you serve your images from multiple hostnames, you can get more than two downloads to occur in parallel. While a script is downloading, however, the browser won't start any other downloads, even on different hostnames.

In some situations it's not easy to move scripts to the bottom. If, for example, the script uses document.write to insert part of the page's content, it can't be moved lower in the page. There might also be scoping issues. In many cases, there are ways to workaround these situations.

An alternative suggestion that often comes up is to use deferred scripts. The DEFER attribute indicates that the script does not contain document.write, and is a clue to browsers that they can continue rendering. Unfortunately, Firefox doesn't support the DEFER attribute. In Internet Explorer, the script may be deferred, but not as much as desired. If a script can be deferred, it can also be moved to the bottom of the page. That will make your web pages load faster.

Avoid CSS Expressions

tag: css

CSS expressions are a powerful (and dangerous) way to set CSS properties dynamically. They were supported in Internet Explorer starting with version 5, but were deprecated starting with IE8. As an example, the background color could be set to alternate every hour using CSS expressions:

  background-color: expression( (new Date()).getHours()%2 ? "#B8D4FF" : "#F08A00" );

As shown here, the expression method accepts a JavaScript expression. The CSS property is set to the result of evaluating the JavaScript expression. The expression method is ignored by other browsers, so it is useful for setting properties in Internet Explorer needed to create a consistent experience across browsers.

The problem with expressions is that they are evaluated more frequently than most people expect. Not only are they evaluated when the page is rendered and resized, but also when the page is scrolled and even when the user moves the mouse over the page. Adding a counter to the CSS expression allows us to keep track of when and how often a CSS expression is evaluated. Moving the mouse around the page can easily generate more than 10,000 evaluations.

One way to reduce the number of times your CSS expression is evaluated is to use one-time expressions, where the first time the expression is evaluated it sets the style property to an explicit value, which replaces the CSS expression. If the style property must be set dynamically throughout the life of the page, using event handlers instead of CSS expressions is an alternative approach. If you must use CSS expressions, remember that they may be evaluated thousands of times and could affect the performance of your page.

Make JavaScript and CSS External

tag: javascript, css

Many of these performance rules deal with how external components are managed. However, before these considerations arise you should ask a more basic question: Should JavaScript and CSS be contained in external files, or inlined in the page itself?

Using external files in the real world generally produces faster pages because the JavaScript and CSS files are cached by the browser. JavaScript and CSS that are inlined in HTML documents get downloaded every time the HTML document is requested. This reduces the number of HTTP requests that are needed, but increases the size of the HTML document. On the other hand, if the JavaScript and CSS are in external files cached by the browser, the size of the HTML document is reduced without increasing the number of HTTP requests.

The key factor, then, is the frequency with which external JavaScript and CSS components are cached relative to the number of HTML documents requested. This factor, although difficult to quantify, can be gauged using various metrics. If users on your site have multiple page views per session and many of your pages re-use the same scripts and stylesheets, there is a greater potential benefit from cached external files.

Many web sites fall in the middle of these metrics. For these sites, the best solution generally is to deploy the JavaScript and CSS as external files. The only exception where inlining is preferable is with home pages, such as Yahoo!'s front page and My Yahoo!. Home pages that have few (perhaps only one) page view per session may find that inlining JavaScript and CSS results in faster end-user response times.

For front pages that are typically the first of many page views, there are techniques that leverage the reduction of HTTP requests that inlining provides, as well as the caching benefits achieved through using external files. One such technique is to inline JavaScript and CSS in the front page, but dynamically download the external files after the page has finished loading. Subsequent pages would reference the external files that should already be in the browser's cache.

Reduce DNS Lookups

tag: content

The Domain Name System (DNS) maps hostnames to IP addresses, just as phonebooks map people's names to their phone numbers. When you type www.yahoo.com into your browser, a DNS resolver contacted by the browser returns that server's IP address. DNS has a cost. It typically takes 20-120 milliseconds for DNS to lookup the IP address for a given hostname. The browser can't download anything from this hostname until the DNS lookup is completed.

DNS lookups are cached for better performance. This caching can occur on a special caching server, maintained by the user's ISP or local area network, but there is also caching that occurs on the individual user's computer. The DNS information remains in the operating system's DNS cache (the "DNS Client service" on Microsoft Windows). Most browsers have their own caches, separate from the operating system's cache. As long as the browser keeps a DNS record in its own cache, it doesn't bother the operating system with a request for the record.

Internet Explorer caches DNS lookups for 30 minutes by default, as specified by the DnsCacheTimeout registry setting. Firefox caches DNS lookups for 1 minute, controlled by the network.dnsCacheExpiration configuration setting. (Fasterfox changes this to 1 hour.)

When the client's DNS cache is empty (for both the browser and the operating system), the number of DNS lookups is equal to the number of unique hostnames in the web page. This includes the hostnames used in the page's URL, images, script files, stylesheets, Flash objects, etc. Reducing the number of unique hostnames reduces the number of DNS lookups.

Reducing the number of unique hostnames has the potential to reduce the amount of parallel downloading that takes place in the page. Avoiding DNS lookups cuts response times, but reducing parallel downloads may increase response times. My guideline is to split these components across at least two but no more than four hostnames. This results in a good compromise between reducing DNS lookups and allowing a high degree of parallel downloads.

Minify JavaScript and CSS

tag: javascript, css

Minification is the practice of removing unnecessary characters from code to reduce its size thereby improving load times. When code is minified all comments are removed, as well as unneeded white space characters (space, newline, and tab). In the case of JavaScript, this improves response time performance because the size of the downloaded file is reduced. Two popular tools for minifying JavaScript code are JSMin and YUI Compressor. The YUI compressor can also minify CSS.

Obfuscation is an alternative optimization that can be applied to source code. It's more complex than minification and thus more likely to generate bugs as a result of the obfuscation step itself. In a survey of ten top U.S. web sites, minification achieved a 21% size reduction versus 25% for obfuscation. Although obfuscation has a higher size reduction, minifying JavaScript is less risky.

In addition to minifying external scripts and styles, inlined < script > and < style > blocks can and should also be minified. Even if you gzip your scripts and styles, minifying them will still reduce the size by 5% or more. As the use and size of JavaScript and CSS increases, so will the savings gained by minifying your code.

Avoid Redirects

tag: content

Redirects are accomplished using the 301 and 302 status codes. Here's an example of the HTTP headers in a 301 response:

  HTTP/1.1 301 Moved Permanently
  Location: http://example.com/newuri
  Content-Type: text/html

The browser automatically takes the user to the URL specified in the Location field. All the information necessary for a redirect is in the headers. The body of the response is typically empty. Despite their names, neither a 301 nor a 302 response is cached in practice unless additional headers, such as Expires or Cache-Control, indicate it should be. The meta refresh tag and JavaScript are other ways to direct users to a different URL, but if you must do a redirect, the preferred technique is to use the standard 3xx HTTP status codes, primarily to ensure the back button works correctly.

The main thing to remember is that redirects slow down the user experience. Inserting a redirect between the user and the HTML document delays everything in the page since nothing in the page can be rendered and no components can start being downloaded until the HTML document has arrived.

One of the most wasteful redirects happens frequently and web developers are generally not aware of it. It occurs when a trailing slash (/) is missing from a URL that should otherwise have one. For example, going to http://astrology.yahoo.com/astrology results in a 301 response containing a redirect to http://astrology.yahoo.com/astrology/ (notice the added trailing slash). This is fixed in Apache by using Alias or mod_rewrite, or the DirectorySlash directive if you're using Apache handlers.

Connecting an old web site to a new one is another common use for redirects. Others include connecting different parts of a website and directing the user based on certain conditions (type of browser, type of user account, etc.). Using a redirect to connect two web sites is simple and requires little additional coding. Although using redirects in these situations reduces the complexity for developers, it degrades the user experience. Alternatives for this use of redirects include using Alias and mod_rewrite if the two code paths are hosted on the same server. If a domain name change is the cause of using redirects, an alternative is to create a CNAME (a DNS record that creates an alias pointing from one domain name to another) in combination with Alias or mod_rewrite.

Remove Duplicate Scripts

tag: javascript

It hurts performance to include the same JavaScript file twice in one page. This isn't as unusual as you might think. A review of the ten top U.S. web sites shows that two of them contain a duplicated script. Two main factors increase the odds of a script being duplicated in a single web page: team size and number of scripts. When it does happen, duplicate scripts hurt performance by creating unnecessary HTTP requests and wasted JavaScript execution.

Unnecessary HTTP requests happen in Internet Explorer, but not in Firefox. In Internet Explorer, if an external script is included twice and is not cacheable, it generates two HTTP requests during page loading. Even if the script is cacheable, extra HTTP requests occur when the user reloads the page.

In addition to generating wasteful HTTP requests, time is wasted evaluating the script multiple times. This redundant JavaScript execution happens in both Firefox and Internet Explorer, regardless of whether the script is cacheable.

One way to avoid accidentally including the same script twice is to implement a script management module in your templating system. The typical way to include a script is to use the SCRIPT tag in your HTML page.

  <script type="text/javascript" src="menu_1.0.17.js"></script>

An alternative in PHP would be to create a function called insertScript.

  <?php insertScript("menu.js") ?>

In addition to preventing the same script from being inserted multiple times, this function could handle other issues with scripts, such as dependency checking and adding version numbers to script filenames to support far future Expires headers.

Configure ETags

tag: server

Entity tags (ETags) are a mechanism that web servers and browsers use to determine whether the component in the browser's cache matches the one on the origin server. (An "entity" is another word a "component": images, scripts, stylesheets, etc.) ETags were added to provide a mechanism for validating entities that is more flexible than the last-modified date. An ETag is a string that uniquely identifies a specific version of a component. The only format constraints are that the string be quoted. The origin server specifies the component's ETag using the ETag response header.

  HTTP/1.1 200 OK
  Last-Modified: Tue, 12 Dec 2006 03:03:59 GMT
  ETag: "10c24bc-4ab-457e1c1f"
  Content-Length: 12195

Later, if the browser has to validate a component, it uses the If-None-Match header to pass the ETag back to the origin server. If the ETags match, a 304 status code is returned reducing the response by 12195 bytes for this example.

  GET /i/yahoo.gif HTTP/1.1
  Host: us.yimg.com
  If-Modified-Since: Tue, 12 Dec 2006 03:03:59 GMT
  If-None-Match: "10c24bc-4ab-457e1c1f"
  HTTP/1.1 304 Not Modified

The problem with ETags is that they typically are constructed using attributes that make them unique to a specific server hosting a site. ETags won't match when a browser gets the original component from one server and later tries to validate that component on a different server, a situation that is all too common on Web sites that use a cluster of servers to handle requests. By default, both Apache and IIS embed data in the ETag that dramatically reduces the odds of the validity test succeeding on web sites with multiple servers.

The ETag format for Apache 1.3 and 2.x is inode-size-timestamp. Although a given file may reside in the same directory across multiple servers, and have the same file size, permissions, timestamp, etc., its inode is different from one server to the next.

IIS 5.0 and 6.0 have a similar issue with ETags. The format for ETags on IIS is Filetimestamp:ChangeNumber. A ChangeNumber is a counter used to track configuration changes to IIS. It's unlikely that the ChangeNumber is the same across all IIS servers behind a web site.

The end result is ETags generated by Apache and IIS for the exact same component won't match from one server to another. If the ETags don't match, the user doesn't receive the small, fast 304 response that ETags were designed for; instead, they'll get a normal 200 response along with all the data for the component. If you host your web site on just one server, this isn't a problem. But if you have multiple servers hosting your web site, and you're using Apache or IIS with the default ETag configuration, your users are getting slower pages, your servers have a higher load, you're consuming greater bandwidth, and proxies aren't caching your content efficiently. Even if your components have a far future Expires header, a conditional GET request is still made whenever the user hits Reload or Refresh.

If you're not taking advantage of the flexible validation model that ETags provide, it's better to just remove the ETag altogether. The Last-Modified header validates based on the component's timestamp. And removing the ETag reduces the size of the HTTP headers in both the response and subsequent requests. This Microsoft Support article describes how to remove ETags. In Apache, this is done by simply adding the following line to your Apache configuration file:

  FileETag none

Make Ajax Cacheable

tag: content

One of the cited benefits of Ajax is that it provides instantaneous feedback to the user because it requests information asynchronously from the backend web server. However, using Ajax is no guarantee that the user won't be twiddling his thumbs waiting for those asynchronous JavaScript and XML responses to return. In many applications, whether or not the user is kept waiting depends on how Ajax is used. For example, in a web-based email client the user will be kept waiting for the results of an Ajax request to find all the email messages that match their search criteria. It's important to remember that "asynchronous" does not imply "instantaneous".

To improve performance, it's important to optimize these Ajax responses. The most important way to improve the performance of Ajax is to make the responses cacheable, as discussed in Add an Expires or a Cache-Control Header. Some of the other rules also apply to Ajax: Gzip Components Reduce DNS Lookups Minify JavaScript Avoid Redirects Configure ETags

Let's look at an example. A Web 2.0 email client might use Ajax to download the user's address book for autocompletion. If the user hasn't modified her address book since the last time she used the email web app, the previous address book response could be read from cache if that Ajax response was made cacheable with a future Expires or Cache-Control header. The browser must be informed when to use a previously cached address book response versus requesting a new one. This could be done by adding a timestamp to the address book Ajax URL indicating the last time the user modified her address book, for example, &t=1190241612. If the address book hasn't been modified since the last download, the timestamp will be the same and the address book will be read from the browser's cache eliminating an extra HTTP roundtrip. If the user has modified her address book, the timestamp ensures the new URL doesn't match the cached response, and the browser will request the updated address book entries.

Even though your Ajax responses are created dynamically, and might only be applicable to a single user, they can still be cached. Doing so will make your Web 2.0 apps faster.

Flush the Buffer Early

tag: server

When users request a page, it can take anywhere from 200 to 500ms for the backend server to stitch together the HTML page. During this time, the browser is idle as it waits for the data to arrive. In PHP you have the function flush(). It allows you to send your partially ready HTML response to the browser so that the browser can start fetching components while your backend is busy with the rest of the HTML page. The benefit is mainly seen on busy backends or light frontends.

A good place to consider flushing is right after the HEAD because the HTML for the head is usually easier to produce and it allows you to include any CSS and JavaScript files for the browser to start fetching in parallel while the backend is still processing.

Example:

  ... <!-- css, js -->
</head>
<?php flush(); ?>
<body>
  ... <!-- content -->

Yahoo! search pioneered research and real user testing to prove the benefits of using this technique.

Use GET for AJAX Requests

tag: server

The Yahoo! Mail team found that when using XMLHttpRequest, POST is implemented in the browsers as a two-step process: sending the headers first, then sending data. So it's best to use GET, which only takes one TCP packet to send (unless you have a lot of cookies). The maximum URL length in IE is 2K, so if you send more than 2K data you might not be able to use GET.

An interesting side affect is that POST without actually posting any data behaves like GET. Based on the HTTP specs, GET is meant for retrieving information, so it makes sense (semantically) to use GET when you're only requesting data, as opposed to sending data to be stored server-side.

Post-load Components

tag: content

You can take a closer look at your page and ask yourself: "What's absolutely required in order to render the page initially?". The rest of the content and components can wait.

JavaScript is an ideal candidate for splitting before and after the onload event. For example if you have JavaScript code and libraries that do drag and drop and animations, those can wait, because dragging elements on the page comes after the initial rendering. Other places to look for candidates for post-loading include hidden content (content that appears after a user action) and images below the fold.

Tools to help you out in your effort: YUI Image Loader allows you to delay images below the fold and the YUI Get utility is an easy way to include JS and CSS on the fly. For an example in the wild take a look at Yahoo! Home Page with Firebug's Net Panel turned on.

It's good when the performance goals are inline with other web development best practices. In this case, the idea of progressive enhancement tells us that JavaScript, when supported, can improve the user experience but you have to make sure the page works even without JavaScript. So after you've made sure the page works fine, you can enhance it with some post-loaded scripts that give you more bells and whistles such as drag and drop and animations.

Preload Components

tag: content

Preload may look like the opposite of post-load, but it actually has a different goal. By preloading components you can take advantage of the time the browser is idle and request components (like images, styles and scripts) you'll need in the future. This way when the user visits the next page, you could have most of the components already in the cache and your page will load much faster for the user.

There are actually several types of preloading:

Unconditional preload - as soon as onload fires, you go ahead and fetch some extra components. Check google.com for an example of how a sprite image is requested onload. This sprite image is not needed on the google.com homepage, but it is needed on the consecutive search result page. Conditional preload - based on a user action you make an educated guess where the user is headed next and preload accordingly. On search.yahoo.com you can see how some extra components are requested after you start typing in the input box. Anticipated preload - preload in advance before launching a redesign. It often happens after a redesign that you hear: "The new site is cool, but it's slower than before". Part of the problem could be that the users were visiting your old site with a full cache, but the new one is always an empty cache experience. You can mitigate this side effect by preloading some components before you even launched the redesign. Your old site can use the time the browser is idle and request images and scripts that will be used by the new site

Reduce the Number of DOM Elements

tag: content

A complex page means more bytes to download and it also means slower DOM access in JavaScript. It makes a difference if you loop through 500 or 5000 DOM elements on the page when you want to add an event handler for example.

A high number of DOM elements can be a symptom that there's something that should be improved with the markup of the page without necessarily removing content. Are you using nested tables for layout purposes? Are you throwing in more <div>s only to fix layout issues? Maybe there's a better and more semantically correct way to do your markup.

A great help with layouts are the YUI CSS utilities: grids.css can help you with the overall layout, fonts.css and reset.css can help you strip away the browser's defaults formatting. This is a chance to start fresh and think about your markup, for example use <div>s only when it makes sense semantically, and not because it renders a new line.

The number of DOM elements is easy to test, just type in Firebug's console: document.getElementsByTagName('*').length

And how many DOM elements are too many? Check other similar pages that have good markup. For example the Yahoo! Home Page is a pretty busy page and still under 700 elements (HTML tags).

Split Components Across Domains

tag: content

Splitting components allows you to maximize parallel downloads. Make sure you're using not more than 2-4 domains because of the DNS lookup penalty. For example, you can host your HTML and dynamic content on www.example.org and split static components between static1.example.org and static2.example.org

For more information check "Maximizing Parallel Downloads in the Carpool Lane" by Tenni Theurer and Patty Chi.

Minimize the Number of iframes

tag: content

Iframes allow an HTML document to be inserted in the parent document. It's important to understand how iframes work so they can be used effectively.

< iframe > pros:

Helps with slow third-party content like badges and ads
Security sandbox
Download scripts in parallel
< iframe > cons:

Costly even if blank Blocks page onload Non-semantic

No 404s

tag: content

HTTP requests are expensive so making an HTTP request and getting a useless response (i.e. 404 Not Found) is totally unnecessary and will slow down the user experience without any benefit.

Some sites have helpful 404s "Did you mean X?", which is great for the user experience but also wastes server resources (like database, etc). Particularly bad is when the link to an external JavaScript is wrong and the result is a 404. First, this download will block parallel downloads. Next the browser may try to parse the 404 response body as if it were JavaScript code, trying to find something usable in it.

tag: cookie

HTTP cookies are used for a variety of reasons such as authentication and personalization. Information about cookies is exchanged in the HTTP headers between web servers and browsers. It's important to keep the size of cookies as low as possible to minimize the impact on the user's response time.

For more information check "When the Cookie Crumbles" by Tenni Theurer and Patty Chi. The take-home of this research:

Eliminate unnecessary cookies Keep cookie sizes as low as possible to minimize the impact on the user response time Be mindful of setting cookies at the appropriate domain level so other sub-domains are not affected Set an Expires date appropriately. An earlier Expires date or none removes the cookie sooner, improving the user response time

tag: cookie

When the browser makes a request for a static image and sends cookies together with the request, the server doesn't have any use for those cookies. So they only create network traffic for no good reason. You should make sure static components are requested with cookie-free requests. Create a subdomain and host all your static components there.

If your domain is www.example.org, you can host your static components on static.example.org. However, if you've already set cookies on the top-level domain example.org as opposed to www.example.org, then all the requests to static.example.org will include those cookies. In this case, you can buy a whole new domain, host your static components there, and keep this domain cookie-free. Yahoo! uses yimg.com, YouTube uses ytimg.com, Amazon uses images-amazon.com and so on.

Another benefit of hosting static components on a cookie-free domain is that some proxies might refuse to cache the components that are requested with cookies. On a related note, if you wonder if you should use example.org or www.example.org for your home page, consider the cookie impact. Omitting www leaves you no choice but to write cookies to *.example.org, so for performance reasons it's best to use the www subdomain and write the cookies to that subdomain.

Minimize DOM Access

tag: javascript

Accessing DOM elements with JavaScript is slow so in order to have a more responsive page, you should:

Cache references to accessed elements Update nodes "offline" and then add them to the tree Avoid fixing layout with JavaScript For more information check the YUI theatre's "High Performance Ajax Applications" by Julien Lecomte.

Develop Smart Event Handlers

tag: javascript

Sometimes pages feel less responsive because of too many event handlers attached to different elements of the DOM tree which are then executed too often. That's why using event delegation is a good approach. If you have 10 buttons inside a div, attach only one event handler to the div wrapper, instead of one handler for each button. Events bubble up so you'll be able to catch the event and figure out which button it originated from.

You also don't need to wait for the onload event in order to start doing something with the DOM tree. Often all you need is the element you want to access to be available in the tree. You don't have to wait for all images to be downloaded. DOMContentLoaded is the event you might consider using instead of onload, but until it's available in all browsers, you can use the YUI Event utility, which has an onAvailable method.

For more information check the YUI theatre's "High Performance Ajax Applications" by Julien Lecomte.

Choose <link> over @import

tag: css

One of the previous best practices states that CSS should be at the top in order to allow for progressive rendering.

In IE @import behaves the same as using <link> at the bottom of the page, so it's best not to use it.

Avoid Filters

tag: css

The IE-proprietary AlphaImageLoader filter aims to fix a problem with semi-transparent true color PNGs in IE versions < 7. The problem with this filter is that it blocks rendering and freezes the browser while the image is being downloaded. It also increases memory consumption and is applied per element, not per image, so the problem is multiplied.

The best approach is to avoid AlphaImageLoader completely and use gracefully degrading PNG8 instead, which are fine in IE. If you absolutely need AlphaImageLoader, use the underscore hack _filter as to not penalize your IE7+ users.

Optimize Images

tag: images

After a designer is done with creating the images for your web page, there are still some things you can try before you FTP those images to your web server.

You can check the GIFs and see if they are using a palette size corresponding to the number of colors in the image. Using imagemagick it's easy to check using identify -verbose image.gif When you see an image using 4 colors and a 256 color "slots" in the palette, there is room for improvement. Try converting GIFs to PNGs and see if there is a saving. More often than not, there is. Developers often hesitate to use PNGs due to the limited support in browsers, but this is now a thing of the past. The only real problem is alpha-transparency in true color PNGs, but then again, GIFs are not true color and don't support variable transparency either. So anything a GIF can do, a palette PNG (PNG8) can do too (except for animations). This simple imagemagick command results in totally safe-to-use PNGs: convert image.gif image.png "All we are saying is: Give PiNG a Chance!" Run pngcrush (or any other PNG optimizer tool) on all your PNGs. Example: pngcrush image.png -rem alla -reduce -brute result.png Run jpegtran on all your JPEGs. This tool does lossless JPEG operations such as rotation and can also be used to optimize and remove comments and other useless information (such as EXIF information) from your images. jpegtran -copy none -optimize -perfect src.jpg dest.jpg

Optimize CSS Sprites

tag: images

Arranging the images in the sprite horizontally as opposed to vertically usually results in a smaller file size. Combining similar colors in a sprite helps you keep the color count low, ideally under 256 colors so to fit in a PNG8. "Be mobile-friendly" and don't leave big gaps between the images in a sprite. This doesn't affect the file size as much but requires less memory for the user agent to decompress the image into a pixel map. 100x100 image is 10 thousand pixels, where 1000x1000 is 1 million pixels

Don't Scale Images in HTML

tag: images

Don't use a bigger image than you need just because you can set the width and height in HTML. If you need <img width="100" height="100" src="mycat.jpg" alt="My Cat" /> then your image (mycat.jpg) should be 100x100px rather than a scaled down 500x500px image.

Make favicon.ico Small and Cacheable

tag: images

The favicon.ico is an image that stays in the root of your server. It's a necessary evil because even if you don't care about it the browser will still request it, so it's better not to respond with a 404 Not Found. Also since it's on the same server, cookies are sent every time it's requested. This image also interferes with the download sequence, for example in IE when you request extra components in the onload, the favicon will be downloaded before these extra components.

So to mitigate the drawbacks of having a favicon.ico make sure:

It's small, preferably under 1K. Set Expires header with what you feel comfortable (since you cannot rename it if you decide to change it). You can probably safely set the Expires header a few months in the future. You can check the last modified date of your current favicon.ico to make an informed decision. Imagemagick can help you create small favicons

Keep Components under 25K

tag: mobile

This restriction is related to the fact that iPhone won't cache components bigger than 25K. Note that this is the uncompressed size. This is where minification is important because gzip alone may not be sufficient.

For more information check "Performance Research, Part 5: iPhone Cacheability - Making it Stick" by Wayne Shea and Tenni Theurer.

Pack Components into a Multipart Document

tag: mobile

Packing components into a multipart document is like an email with attachments, it helps you fetch several components with one HTTP request (remember: HTTP requests are expensive). When you use this technique, first check if the user agent supports it (iPhone does not).

Avoid Empty Image src

tag: server

Image with empty string src attribute occurs more than one will expect. It appears in two form:

straight HTML
<img src="">
JavaScript
var img = new Image();
img.src = "";

Both forms cause the same effect: browser makes another request to your server.

Internet Explorer makes a request to the directory in which the page is located. Safari and Chrome make a request to the actual page itself. Firefox 3 and earlier versions behave the same as Safari and Chrome, but version 3.5 addressed this issue[bug 444931] and no longer sends a request. Opera does not do anything when an empty image src is encountered.

Why is this behavior bad?

Cripple your servers by sending a large amount of unexpected traffic, especially for pages that get millions of page views per day. Waste server computing cycles generating a page that will never be viewed. Possibly corrupt user data. If you are tracking state in the request, either by cookies or in another way, you have the possibility of destroying data. Even though the image request does not return an image, all of the headers are read and accepted by the browser, including all cookies. While the rest of the response is thrown away, the damage may already be done.

The root cause of this behavior is the way that URI resolution is performed in browsers. This behavior is defined in RFC 3986 - Uniform Resource Identifiers. When an empty string is encountered as a URI, it is considered a relative URI and is resolved according to the algorithm defined in section 5.2. This specific example, an empty string, is listed in section 5.4. Firefox, Safari, and Chrome are all resolving an empty string correctly per the specification, while Internet Explorer is resolving it incorrectly, apparently in line with an earlier version of the specification, RFC 2396 - Uniform Resource Identifiers (this was obsoleted by RFC 3986). So technically, the browsers are doing what they are supposed to do to resolve relative URIs. The problem is that in this context, the empty string is clearly unintentional.

HTML5 adds to the description of the tag's src attribute to instruct browsers not to make an additional request in section 4.8.2:

The src attribute must be present, and must contain a valid URL referencing a non-interactive, optionally animated, image resource that is neither paged nor scripted. If the base URI of the element is the same as the document's address, then the src attribute's value must not be the empty string. Hopefully, browsers will not have this problem in the future. Unfortunately, there is no such clause for < script src="" > and < link href="" >. Maybe there is still time to make that adjustment to ensure browsers don't accidentally implement this behavior. This rule was inspired by Yahoo!'s JavaScript guru Nicolas C. Zakas. For more information check out his article "Empty image src can destroy your site".

简译

Yahoo!的Exceptional Performance团队为改善Web性能带来最佳实践。他们为此进行了一系列的实验、开发了各种工具、写了大量的文章和博客并在各种会议上参与探讨。最佳实践的核心就是旨在提高网站性能。 Excetional Performance团队总结出了一系列可以提高网站速度的方法。可以分为7大类34条。包括内容、服务器、cookie、CSS、JavaScript、图片、移动应用等七部分。

其中内容部分一共十条建议:

一、内容部分尽量减少HTTP请求 减少DNS查找 避免跳转 缓存Ajxa 推迟加载 提前加载 减少DOM元素数量 用域名划分页面内容 使frame数量最少 避免404错误 1、尽量减少HTTP请求次数 终端用户响应的时间中,有80%用于下载各项内容。这部分时间包括下载页面中的图像、样式表、脚本、Flash等。通过减少页面中的元素可以减少HTTP请求的次数。这是提高网页速度的关键步骤。 减少页面组件的方法其实就是简化页面设计。那么有没有一种方法既能保持页面内容的丰富性又能达到加快响应时间的目的呢?这里有几条减少HTTP请求次数同时又可能保持页面内容丰富的技术。

合并文件是通过把所有的脚本放到一个文件中来减少HTTP请求的方法,如可以简单地把所有的CSS文件都放入一个样式表中。当脚本或者样式表在不同页面中使用时需要做不同的修改,这可能会相对麻烦点,但即便如此也要把这个方法作为改善页面性能的重要一步。

CSS Sprites是减少图像请求的有效方法。把所有的背景图像都放到一个图片文件中,然后通过CSS的background-image和background-position属性来显示图片的不同部分;

图片地图是把多张图片整合到一张图片中。虽然文件的总体大小不会改变,但是可以减少HTTP请求次数。图片地图只有在图片的所有组成部分在页面中是紧挨在一起的时候才能使用,如导航栏。确定图片的坐标和可能会比较繁琐且容易出错,同时使用图片地图导航也不具有可读性,因此不推荐这种方法;

内联图像是使用data:URL scheme的方法把图像数据加载页面中。这可能会增加页面的大小。把内联图像放到样式表(可缓存)中可以减少HTTP请求同时又避免增加页面文件的大小。但是内联图像现在还没有得到主流浏览器的支持。

 减少页面的HTTP请求次数是你首先要做的一步。这是改进首次访问用户等待时间的最重要的方法。如同Tenni Theurer的他的博客Browser Cahe Usage - Exposed!中所说,HTTP请求在无缓存情况下占去了40%到60%的响应时间。让那些初次访问你网站的人获得更加快速的体验吧!

2、减少DNS查找次数 域名系统(DNS)提供了域名和IP的对应关系,就像电话本中人名和他们的电话号码的关系一样。当你在浏览器地址栏中输入www.dudo.org时,DNS解析服务器就会返回这个域名对应的IP地址。DNS解析的过程同样也是需要时间的。一般情况下返回给定域名对应的IP地址会花费20到120毫秒的时间。而且在这个过程中浏览器什么都不会做直到DNS查找完毕。

   缓存DNS查找可以改善页面性能。这种缓存需要一个特定的缓存服务器,这种服务器一般属于用户的ISP提供商或者本地局域网控制,但是它同样会在用户使用的计算机上产生缓存。DNS信息会保留在操作系统的DNS缓存中(微软Windows系统中DNS Client Service)。大多数浏览器有独立于操作系统以外的自己的缓存。由于浏览器有自己的缓存记录,因此在一次请求中它不会受到操作系统的影响。

  Internet Explorer默认情况下对DNS查找记录的缓存时间为30分钟,它在注册表中的键值为DnsCacheTimeout。Firefox对DNS的查找记录缓存时间为1分钟,它在配置文件中的选项为network.dnsCacheExpiration(Fasterfox把这个选项改为了1小时)。

  当客户端中的DNS缓存都为空时(浏览器和操作系统都为空),DNS查找的次数和页面中主机名的数量相同。这其中包括页面中URL、图片、脚本文件、样式表、Flash对象等包含的主机名。减少主机名的数量可以减少DNS查找次数。

  减少主机名的数量还可以减少页面中并行下载的数量。减少DNS查找次数可以节省响应时间,但是减少并行下载却会增加响应时间。我的指导原则是把这些页面中的内容分割成至少两部分但不超过四部分。这种结果就是在减少DNS查找次数和保持较高程度并行下载两者之间的权衡了。

3、避免跳转 跳转是使用301和302代码实现的。下面是一个响应代码为301的HTTP头: HTTP/1.1 301 Moved Permanently Location: http://example.com/newuri Content-Type: text/html 浏览器会把用户指向到Location中指定的URL。头文件中的所有信息在一次跳转中都是必需的,内容部分可以为空。不管他们的名称,301和302响应都不会被缓存除非增加一个额外的头选项,如Expires或者Cache-Control来指定它缓存。元素的刷新标签和JavaScript也可以实现URL的跳转,但是如果你必须要跳转的时候,最好的方法就是使用标准的3XXHTTP状态代码,这主要是为了确保“后退”按钮可以正确地使用。

  但是要记住跳转会降低用户体验。在用户和HTML文档中间增加一个跳转,会拖延页面中所有元素的显示,因为在HTML文件被加载前任何文件(图像、Flash等)都不会被下载。

  有一种经常被网页开发者忽略却往往十分浪费响应时间的跳转现象。这种现象发生在当URL本该有斜杠(/)却被忽略掉时。例如,当我们要访问http://astrology.yahoo.com/astrology 时,实际上返回的是一个包含301代码的跳转,它指向的是http://astrology.yahoo.com/astrology/  (注意末尾的斜杠)。在Apache服务器中可以使用Alias 或者 mod_rewrite或者the DirectorySlash来避免。

  连接新网站和旧网站是跳转功能经常被用到的另一种情况。这种情况下往往要连接网站的不同内容然后根据用户的不同类型(如浏览器类型、用户账号所属类型)来进行跳转。使用跳转来实现两个网站的切换十分简单,需要的代码量也不多。尽管使用这种方法对于开发者来说可以降低复杂程度,但是它同样降低用户体验。一个可替代方法就是如果两者在同一台服务器上时使用Alias和mod_rewrite和实现。如果是因为域名的不同而采用跳转,那么可以通过使用Alias或者mod_rewirte建立CNAME(保存一个域名和另外一个域名之间关系的DNS记录)来替代。

4、可缓存的AJAX Ajax经常被提及的一个好处就是由于其从后台服务器传输信息的异步性而为用户带来的反馈的即时性。但是,使用Ajax并不能保证用户不会在等待异步的JavaScript和XML响应上花费时间。在很多应用中,用户是否需要等待响应取决于Ajax如何来使用。例如,在一个基于Web的Email客户端中,用户必须等待Ajax返回符合他们条件的邮件查询结果。记住一点,“异步”并不异味着“即时”,这很重要。

  为了提高性能,优化Ajax响应是很重要的。提高Ajxa性能的措施中最重要的方法就是使响应具有可缓存性,具体的讨论可以查看Add an Expires or a Cache-Control Header。其它的几条规则也同样适用于Ajax:
Gizp压缩文件
减少DNS查找次数
精简JavaScript
避免跳转
配置ETags

 让我们来看一个例子:一个Web2.0的Email客户端会使用Ajax来自动完成对用户地址薄的下载。如果用户在上次使用过Email web应用程序后没有对地址薄作任何的修改,而且Ajax响应通过Expire或者Cacke-Control头来实现缓存,那么就可以直接从上一次的缓存中读取地址薄了。必须告知浏览器是使用缓存中的地址薄还是发送一个新的请求。这可以通过为读取地址薄的Ajax URL增加一个含有上次编辑时间的时间戳来实现,例如,&t=11900241612等。如果地址薄在上次下载后没有被编辑过,时间戳就不变,则从浏览器的缓存中加载从而减少了一次HTTP请求过程。如果用户修改过地址薄,时间戳就会用来确定新的URL和缓存响应并不匹配,浏览器就会重要请求更新地址薄。
    即使你的Ajxa响应是动态生成的,哪怕它只适用于一个用户,那么它也应该被缓存起来。这样做可以使你的Web2.0应用程序更加快捷。

5、推迟加载内容 你可以仔细看一下你的网页,问问自己“哪些内容是页面呈现时所必需首先加载的?哪些内容和结构可以稍后再加载? 把整个过程按照onload事件分隔成两部分,JavaScript是一个理想的选择。例如,如果你有用于实现拖放和动画的JavaScript,那么它就以等待稍后加载,因为页面上的拖放元素是在初始化呈现之后才发生的。其它的例如隐藏部分的内容(用户操作之后才显现的内容)和处于折叠部分的图像也可以推迟加载 工具可以节省你的工作量:YUI Image Loader可以帮你推迟加载折叠部分的图片,YUI Get utility是包含JS和 CSS的便捷方法。比如你可以打开Firebug的Net选项卡看一下Yahoo的首页。 当性能目标和其它网站开发实践一致时就会相得益彰。这种情况下,通过程序提高网站性能的方法告诉我们,在支持JavaScript的情况下,可以先去除用户体验,不过这要保证你的网站在没有JavaScript也可以正常运行。在确定页面运行正常后,再加载脚本来实现如拖放和动画等更加花哨的效果。 6、预加载 预加载和后加载看起来似乎恰恰相反,但实际上预加载是为了实现另外一种目标。预加载是在浏览器空闲时请求将来可能会用到的页面内容(如图像、样式表和脚本)。使用这种方法,当用户要访问下一个页面时,页面中的内容大部分已经加载到缓存中了,因此可以大大改善访问速度。

下面提供了几种预加载方法: 无条件加载:触发onload事件时,直接加载额外的页面内容。以Google.com为例,你可以看一下它的spirit image图像是怎样在onload中加载的。这个spirit image图像在google.com主页中是不需要的,但是却可以在搜索结果页面中用到它。 有条件加载:根据用户的操作来有根据地判断用户下面可能去往的页面并相应的预加载页面内容。在search.yahoo.com中你可以看到如何在你输入内容时加载额外的页面内容。 有预期的加载:载入重新设计过的页面时使用预加载。这种情况经常出现在页面经过重新设计后用户抱怨“新的页面看起来很酷,但是却比以前慢”。问题可能出在用户对于你的旧站点建立了完整的缓存,而对于新站点却没有任何缓存内容。因此你可以在访问新站之前就加载一部内容来避免这种结果的出现。在你的旧站中利用浏览器的空余时间加载新站中用到的图像的和脚本来提高访问速度。

7、减少DOM元素数量 一个复杂的页面意味着需要下载更多数据,同时也意味着JavaScript遍历DOM的效率越慢。比如当你增加一个事件句柄时在500和5000个DOM元素中循环效果肯定是不一样的。 大量的DOM元素的存在意味着页面中有可以不用移除内容只需要替换元素标签就可以精简的部分。你在页面布局中使用表格了吗?你有没有仅仅为了布局而引入更多的 元素呢?也许会存在一个适合或者在语意是更贴切的标签可以供你使用。 YUI CSS utilities可以给你的布局带来巨大帮助:grids.css可以帮你实现整体布局,font.css和reset.css可以帮助你移除浏览器默认格式。它提供了一个重新审视你页面中标签的机会,比如只有在语意上有意义时才使用 ,而不是因为它具有换行效果才使用它。 DOM元素数量很容易计算出来,只需要在Firebug的控制台内输入: document.getElementsByTagName('*').length 那么多少个DOM元素算是多呢?这可以对照有很好标记使用的类似页面。比如Yahoo!主页是一个内容非常多的页面,但是它只使用了700个元素(HTML标签)。

8、根据域名划分页面内容 把页面内容划分成若干部分可以使你最大限度地实现平行下载。由于DNS查找带来的影响你首先要确保你使用的域名数量在2个到4个之间。例如,你可以把用到的HTML内容和动态内容放在www.example.org上,而把页面各种组件(图片、脚本、CSS)分别存放在statics1.example.org和statics.example.org上。 你可在Tenni Theurer和Patty Chi合写的文章Maximizing Parallel Downloads in the Carpool Lane找到更多相关信息。

9、使iframe的数量最小 ifrmae元素可以在父文档中插入一个新的HTML文档。了解iframe的工作理然后才能更加有效地使用它,这一点很重要。

(adsbygoogle = window.adsbygoogle || []).push({});

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 解决yum install时多版本冲突问题 原

    (adsbygoogle = window.adsbygoogle || []).push({});

    阿dai学长
  • 使用innobackupex进行mysql备份

    说明: 使用xtrabackup进行备份需要使用mysql用户,该用户需要有备份的权限。

    阿dai学长
  • 使用xtrabackup完成远程备份 转

    (adsbygoogle = window.adsbygoogle || []).push({});

    阿dai学长
  • 最重要的论文之一:无监督的语义特征学习 论文翻译及代码

    用户1908973
  • 常用翻译技巧

    英汉两种语言在句法、词汇、修辞等方面均存在着很大的差异,因此在进行英汉互译时必然会遇到很多困难,需要有一定的翻译技巧作指导。常用的翻译技巧有增译法、省译法、转换...

    张善友
  • 【Matlab机器学习】之图像识别

    1.Classification in the Presence of Missing Data 2.Handwriting Recognition Using...

    量化投资与机器学习微信公众号
  • 时间序列预测与递归神经网络在Keras的应用基于Python

    编辑整理 编辑部:西西 原文作者 Jason Brownlee 问题描述 问题为:国际客运量预测。该数据范围从 1949 年 1 月至 1960 年 12 月。...

    量化投资与机器学习微信公众号
  • 重磅独家 | 腾讯AI Lab AAAI18现场陈述论文:用随机象限性消极下降算法训练L1范数约束模型

    前言:腾讯 AI Lab共有12篇论文入选在美国新奥尔良举行的国际人工智能领域顶级学术会议 AAAI 2018。腾讯技术工程官方号独家编译了论文《用随机象限性消...

    腾讯技术工程官方号
  • lua Standard Libraries

    The standard Lua libraries provide useful functions that are implemented directl...

    晚晴幽草轩轩主
  • P&R | 物理设计流程概述

    题记,VLSI System Design 上的这篇文章其实没什么实质性的内容,只是一个特别特别笼统的概述,而且由于年久失修,某些地方的概念欠完备,但该文趣味十...

    老秃胖驴

扫码关注云+社区

领取腾讯云代金券