专栏首页加米谷大数据人工智能和数据科学的七大 Python 库

人工智能和数据科学的七大 Python 库

本文作者Favio Vázquez从2018年开始发布《数据科学和人工智能每周文摘:Python & R》系列文章,为数据科学家介绍最好的库、repos、packages以及工具。

一年结束,作者列出了2018年的7大最好的Python库,这些库确实地改进了研究人员的工作方式。

07

AdaNet ———快速灵活的AutoML框架

https://github.com/tensorflow/adanet

AdaNet是一个轻量级的、可扩展的TensorFlow AutoML框架,用于使用AdaNet算法训练和部署自适应神经网络。结合了多个学习子网络,以减轻设计有效的神经网络所固有的复杂性。

这个软件包将帮助你选择最优的神经网络架构,实现一种自适应算法,用于学习作为子网络集合的神经架构。

06

TPOT——一个自动化的Python机器学习工具

https://github.com/EpistasisLab/tpot

TPOT全称是基于树的pipeline优化工具(Tree-based Pipeline Optimization Tool),这是一个非常棒Python自动机器学习工具,使用遗传编程优化机器学习pipeline。

05

SHAP ——一个解释任何机器模型输出的统一方法

https://github.com/slundberg/shap

解释机器学习模型并不容易。然而,它对许多商业应用程序来说非常重要。幸运的是,有一些很棒的库可以帮助我们完成这项任务。在许多应用程序中,我们需要知道、理解或证明输入变量在模型中的运作方式,以及它们如何影响最终的模型预测。

SHAP (SHapley Additive exPlanations)是一种解释任何机器学习模型输出的统一方法。SHAP将博弈论与局部解释联系起来,并结合了之前的几种方法。

04

Optimus——使用 Python 和 Spark 轻松实现敏捷数据科学工作流

https://github.com/ironmussa/Optimus

Optimus V2旨在让数据清理更容易。这个API的设计对新手来说超级简单,对使用pandas的人来说也非常熟悉。Optimus扩展了Spark DataFrame功能,添加了.rows和.cols属性。

使用Optimus,你可以以分布式的方式清理数据、准备数据、分析数据、创建分析器和图表,并执行机器学习和深度学习,因为它的后端有Spark、TensorFlow和Keras。

03

spacy——使用Python和Cython的工业级自然语言处理

https://spacy.io/

spaCy旨在帮助你完成实际的工作——构建真实的产品,或收集真实的见解。这个库尊重你的时间,尽量避免浪费。它易于安装,而且它的API简单而高效。spaCy被视为自然语言处理的Ruby on Rails。

spaCy是为深度学习准备文本的最佳方法。它与TensorFlow、PyTorch、Scikit-learn、Gensim以及Python强大的AI生态系统的其他部分无缝交互。使用spaCy,你可以很容易地为各种NLP问题构建语言复杂的统计模型。

02

jupytext

对我来说,jupytext是年度最佳。几乎所有人都在像Jupyter这样的笔记本上工作,但是我们也在项目的更核心部分使用像PyCharm这样的IDE。

好消息是,你可以在自己喜欢的IDE中起草和测试普通脚本,在使用Jupytext时可以将IDE作为notebook在Jupyter中打开。在Jupyter中运行notebook以生成输出,关联.ipynb表示,并作为普通脚本或传统Jupyter notebook 进行保存和分享。

01

Chartify ——让数据科学家很容易创建图表的Python库

https://xkcd.com/1945/

Chartify是Python的年度最佳库。

在Python世界中创建一个像样的图很费时间。幸运的是,我们有像Seaborn之类的库,但问题是他们的plots不是动态的。

然后就出现了Bokeh——这是一个超棒的库,但用它来创造互动情节仍很痛苦。Chartify建立在Bokeh之上,但它简单得多。

本文分享自微信公众号 - 加米谷大数据(DtinoneBD)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-01-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 数据科学中必须了解的Python基础库

    是Python中的机器学习库,专注于“核心”机器学习,包括结构化数据的回归、分类和聚类。

    加米谷大数据
  • 数据科学家的必备技能有哪些?

    国外作者Jeff Hale浏览了一些求职网站,想找出哪些技能是数据科学家最需要掌握的技能,并对普通数据科学技能以及特定的语言和工具的特殊技能分别做了...

    加米谷大数据
  • 漫威之父斯坦•李辞世,AI超级英雄为他送行

    当地时间12日,美国传奇漫画家斯坦·李(Stan Lee)在好莱坞一家医疗中心去世,享年95岁。

    加米谷大数据
  • 想要了解图或图神经网络?没有比看论文更好的方式了

    图是一种非常神奇的表示方式,生活中绝大多数的现象或情境都能用图来表示,例如人际关系网、道路交通网、信息互联网等等。正如马哲介绍事物具有普遍联系性,而图正好能捕捉...

    机器之心
  • Python Weekly 420

    https://www.youtube.com/watch?v=_P7X8tMplsw

    爱写bug
  • Python3.6的新特性f-string和新字典

    应该大多数的写Python的都知道这个特性,所以这篇文章是给不知道的同学写的,知道的就跳过吧。

    andrew_a
  • 安装oracle11g 遇到INS-13001环境不满足最低要求 解决方法

    在安装时点击setup.exe之后,出现了:[INS-13001]环境不满足最低要。

    拓荒者
  • 老码农的「锦囊」:10个编程技巧、5个纠错步骤,让你的编程之路少点坎坷

    在我下决心将编程进行到底之前,大概经历了四次放弃又捡起的过程,而且我观察了一些数据科学的学生,这种事不光是我一个人做过。

    机器之心
  • 第 435 期 Python 周刊

    链接: https://tech.ebayinc.com/engineering/pykrylov-accelerating-machine-learning-...

    爱写bug
  • Python周刊:第 2 期

    TalkPython

扫码关注云+社区

领取腾讯云代金券