作者简介
侯淑芳,2016年加入携程机票大数据团队,负责数据分析和挖掘项目,目前主要负责航变预测和话务预测及排班优化。
二、技术方案实施
日话务量走势
半小时粒度话务走势
我们知道数据依附于商业活动的属性,每个行业都有其特定业务属性和商业周期。就携程这种具有代表性的旅游行业来说,其生产活动有着很强的季节性和周期性,很大程度上会受到旅游淡旺季、出行天气状况以及经济景气等等各种因素的影响。根据上图的数据,我们可以看出携程话务总体来说呈现出来以下几点特征:
我们可以看到整个数据的走势呈现出很明显的时间特性。
通过数据我们可以看到,携程的话务呈现出明显的年周期波动、月周期波动、工作日与双休日这种周周期的波动以及一天之内小时级别的周期性波动。
这种人工接听话务逐年递减的趋势很大程度上要归功于携程APP技术功能的完善。由于携程历年来都很重视技术的研发和用户的操作体验,其PC端和APP的功能设计愈来愈智能化,能极大程度的满足用户的自动化操作需求,因此减少了大量的人工来电咨询量。
节假日的话务量明显要低于正常工作日以及正常双休日的话量。由于携程机票主要提供空中交通的出行服务,其出行热度会直接受制于受到旅游淡旺季的影响,而其咨询期一般都集中在用户的出行前(也就是节假日前),在节假日中,用户都已经处在目的地享受假期,因为呼入话量会急剧下降。
同于受制于携程机票的业务属性,用户能否顺利出行很大程度上掣肘于天气状况,如果发生了极端不适合飞行的天气状况,势必会出现航班延误甚至取消,而此时就会出现携程客户中心的话务暴增点,如果不能提前预估到这种爆点的话量,合理安排客户人员,那在这种时点就会严重影响到用户的体验。
4、V1.0预测系统模型原理
基于工程部署上面简单、高效、快捷的需求,结合对模型预测准确率的考量,在V1.0系统的实现中,我们融合了外生变量、傅里叶项和ARM模型,也即广义上的ARIMAX模型:
最后用XGBOOST回归树结合我们的X对arima模型的残差进行修正,最终用修正过后的残差来修正tbats模型的结果。
本项目从传统的时间序列模型开始尝试,逐步修正不同模型在项目应用中产生的问题,我们回测了不同模型在2018-03-05到2018-07-10这段期间的预测准确率,各模型最终的表现如下:
预测模型 | 平均预测准确率 |
---|---|
STL | 73.9% |
ARIMAX+Fourier | 78.9% |
TBATS | 79.6% |
XGBOOST | 82.7% |
XGB+TBATS | 89.5% |
本项目主要是针对携程呼叫中心的人力排班问题,提前一周进行话务预测。本项目中的方法同样适用于其他行业呼叫中心来电预测。
我们最终发现树模型回归优于传统的时间序列方法,但是能否充分发挥树模型的预测功效,很大程度上取决于特征工程的好坏。
尤其是在时间序列数据的预测上,传统的时间序列模型已然不能解决各行业所遭遇的业务因素对时间序列趋势的干扰,为了把业务因素纳入到预测系统中,我们必须充分构建能够很好的刻画出业务干扰因素的特征,如果你开始考虑树模型回归,请千万记住要把时间规律和趋势提取出来并作为特征放入你树模型中。
本文分享自微信公众号 - 携程技术中心(ctriptech),作者:侯淑芳
原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。
原始发表时间:2018-09-04
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句