专栏首页银河系资讯使用Redis和Java进行数据库缓存

使用Redis和Java进行数据库缓存

为什么数据库缓存如此重要?

您在数据库中获得的信息越多,随着时间的推移它就越慢。即使是为支持许多并发请求而精心设计的数据库管理系统也将最终达到极限。

数据库缓存是处理这些性能问题的最常见策略之一。缓存涉及将数据库查询的结果保存在更快,更容易访问的位置。正确完成后,缓存将减少查询响应时间,减少数据库负载并降低成本。

但是,缓存也需要小心处理,因为它们实际上是在另一个位置创建另一个信息副本。保持数据库和缓存同步并保持最新可能比您预期的更棘手。在下一节中,我们将讨论一些最常见的数据库缓存策略。

什么是不同的缓存策略?

手动缓存(也称为缓存搁置策略)涉及直接管理数据库和缓存。您的应用程序在启动数据库查询之前检查缓存,并在对数据库进行任何更改后更新缓存。

虽然如果正确实现有效,但手动缓存可能非常繁琐,尤其是在您需要查询多个数据库时。出于这些原因,开发人员发明了许多替代缓存策略。

直读缓存策略

在读取缓存中,应用程序首先查询缓存以查看其所需的信息是否在内部。如果没有,它将从数据库中检索信息并使用它来更新缓存。缓存提供程序或缓存库负责查询和更新缓存的详细逻辑。

当应用程序重复请求相同的数据时,读取策略最适合读取繁重的工作负载:例如,一遍又一遍地加载相同文章的新闻网站。

读取策略的一个缺点是对缓存的第一次查询将始终导致未命中,因为保证所请求的信息不在内部。为了解决这个问题,开发人员通常会使用用户可能要求的信息提前“加热”缓存。

直写缓存策略

在直写式高速缓存中,首先对高速缓存进行更新,然后对数据库进行更新。从应用程序到缓存以及从缓存到数据库都有一条直接线。与直读式缓存结合使用时,直写式策略可确保您的数据保持一致,从而无需手动缓存失效。

后写式缓存策略

在后写式缓存(也称为回写式高速缓存)中,应用程序首先将数据写入高速缓存。经过一段设定的延迟后,缓存也会将此信息写入数据库。后写缓存最适合写入繁重的工作负载,即使出现一些故障和停机也可以很好地执行。

基于Java的Redis缓存与Redisson

Redis是NoSQL数据库最受欢迎的选项之一,它使用键值系统来存储数据。Redisson是Java编程语言中的Redis客户端库,可以使用所有熟悉的Java集合轻松访问Redis功能。

Redisson允许您将数据放在外部存储中的map中。您可以使用此功能实现数据库,Web服务或任何其他数据源的缓存。

Redis中的直读缓存

下面是一个Java示例,说明如何在Redis和Redisson中使用直读缓存。

如果请求的条目在缓存中不存在,则它将由MapLoader对象加载:

MapLoader<String, String> mapLoader = new MapLoader<String, String>() {
    @Override
    public Iterable<String> loadAllKeys() {
        List<String> list = new ArrayList<String>();
        Statement statement = conn.createStatement();
        try {
            ResultSet result = statement.executeQuery("SELECT id FROM student");
            while (result.next()) {
                list.add(result.getString(1));
            }
        } finally {
            statement.close();
        }
        return list;
    }
    @Override
    public String load(String key) {
        PreparedStatement preparedStatement = conn.prepareStatement("SELECT name FROM student where id = ?");
        try {
            preparedStatement.setString(1, key);
            ResultSet result = preparedStatement.executeQuery();
            if (result.next()) {
                return result.getString(1);
            }
            return null;
        } finally {
            preparedStatement.close();
        }
    }
};

配置示例:

MapOptions<K, V> options = MapOptions.<K, V>defaults()
                              .loader(mapLoader);
RMap<K, V> map = redisson.getMap("test", options);
// or
RMapCache<K, V> map = redisson.getMapCache("test", options);
// or with boost up to 45x times 
RLocalCachedMap<K, V> map = redisson.getLocalCachedMap("test", options);
// or with boost up to 45x times 
RLocalCachedMapCache<K, V> map = redisson.getLocalCachedMapCache("test", options);

Redis中的直写缓存

下面是一个Java示例,说明如何在Redis中使用MapWriter直写缓存。

在MapWriter对象更新缓存和数据库之前,缓存更新方法不会返回:

MapWriter<String, String> mapWriter = new MapWriter<String, String>() {
    @Override
    public void write(Map<String, String> map) {
        PreparedStatement preparedStatement = conn.prepareStatement("INSERT INTO student (id, name) values (?, ?)");
        try {
            for (Entry<String, String> entry : map.entrySet()) {
                preparedStatement.setString(1, entry.getKey());
                preparedStatement.setString(2, entry.getValue());
                preparedStatement.addBatch();
            }
            preparedStatement.executeBatch();
        } finally {
            preparedStatement.close();
        }
    }
    @Override
    public void delete(Collection<String> keys) {
        PreparedStatement preparedStatement = conn.prepareStatement("DELETE FROM student where id = ?");
        try {
            for (String key : keys) {
                preparedStatement.setString(1, key);
                preparedStatement.addBatch();
            }
            preparedStatement.executeBatch();
        } finally {
            preparedStatement.close();
        }
    }
};

配置示例:

MapOptions<K, V> options = MapOptions.<K, V>defaults()
                              .writer(mapWriter)
                              .writeMode(WriteMode.WRITE_THROUGH);
RMap<K, V> map = redisson.getMap("test", options);
// or
RMapCache<K, V> map = redisson.getMapCache("test", options);
// or with boost up to 45x times 
RLocalCachedMap<K, V> map = redisson.getLocalCachedMap("test", options);
// or with boost up to 45x times 
RLocalCachedMapCache<K, V> map = redisson.getLocalCachedMapCache("test", options);

Redis中的后写缓存

MapWriter接口还用于异步提交对Map对象(缓存)和外部存储(数据库)的更新。所有映射更新都按批次累积,并以定义的延迟异步写入。

writeBehindDelay - 批量写入或删除操作的延迟。默认值为1000毫秒。

writeBehindBatchSize - 批量大小。每个批处理包含Map Entry写入或删除命令。默认值为50。

下面,我们看到Redisson中基于Redis的后写缓存实现的配置的Java示例:

MapOptions<K, V> options = MapOptions.<K, V>defaults()
                              .writer(mapWriter)
                              .writeMode(WriteMode.WRITE_BEHIND)
                              .writeBehindDelay(5000)
                              .writeBehindBatchSize(100);
RMap<K, V> map = redisson.getMap("test", options);
// or
RMapCache<K, V> map = redisson.getMapCache("test", options);
// or with boost up to 45x times 
RLocalCachedMap<K, V> map = redisson.getLocalCachedMap("test", options);
// or with boost up to 45x times 
RLocalCachedMapCache<K, V> map = redisson.getLocalCachedMapCache("test", options);

所有讨论的策略可用Redisson 中的RMapCache,RLocalCachedMap和RLocalCachedMapCache对象实现。使用后两个对象可以使Redis中的读取操作速度提高45倍。

本文分享自微信公众号 - 银河系1号(gh_19a1776ab1d8),作者:银河系1号

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-04-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • The SQL vs NoSQL Difference: MySQL vs MongoDB

    在选择数据库时,最大的决策之一是选择关系(SQL)或非关系(NoSQL)数据结构。虽然两者都是可行的选择,但在做出决定时必须牢记两者之间存在某些关键差异。

    银河1号
  • 成为数据科学家应该知道的10种机器学习算法

    机器学习从业者有不同的个性。虽然其中一些是“我是X专家,X可以训练任何类型的数据”,其中X =某种算法,其他人是“正确的工具用于正确的工作”的人。他们中的很多人...

    银河1号
  • 关于自学机器学习的思考?提醒自己这6件事

    “他在这里,”尼克继续道,“丹是保健科学背景,他研究营养学,然后驾驶Uber,在网上学习机器学习,现在已经是Max Kelsen一年的机器学习工程师。”

    银河1号
  • 缓存穿透、并发和雪崩那些事 转

    作者:李艳鹏,阿里资深技术专家!著有《可伸缩服务架构》,《分布式服务架构》等作品,在区块链,聚合支付,电商等领域有一定的积累!

    wuweixiang
  • Redis缓存穿透、缓存雪崩和缓存击穿理解

    缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询...

    爱撸猫的杰
  • 日均20亿流量:携程机票查询系统的架构升级

    首先简单介绍一下机票的搜索业务:大家可能都用过携程,当你去输入目的地,然后点击搜索的时候,我们的后台就开始了紧张的工作。我们基本上会在一两秒的时间,将最优的结果...

    腾小云
  • 缓存穿透、缓存并发、缓存失效之思路变迁

    我们在项目中使用缓存通常都是先检查缓存中是否存在,如果存在直接返回缓存内容,如果不存在就直接查询数据库然后再缓存查询结果返回。这个时候如果我们查询的某一个数据在...

    Java_老男孩
  • Redis缓存雪崩、缓存击穿、缓存穿透 及 常见缓存模式

    如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有的查询都落在数据库上,造成了缓存雪崩

    搜云库技术团队
  • 微博百万 QPS 的核心技术,真有那么难么?

    缓存和算法一样,几乎是所有大厂的敲门砖。对于后端开发来说,算法会影响你是否可以接到 Offer,而你对缓存知识的理解程度,则会影响你 Offer 的薪资水平。

    芋道源码
  • 浏览器缓存

    原文链接:http://www.cun-xu.cn/index.php/2018/12/26/浏览器缓存/

    IMWeb前端团队

扫码关注云+社区

领取腾讯云代金券