前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >聚类(Clustering) K-means算法

聚类(Clustering) K-means算法

作者头像
foochane
发布2019-05-23 14:43:20
6340
发布2019-05-23 14:43:20
举报
文章被收录于专栏:foochane

1. 归类:

  • 聚类(clustering) 属于非监督学习(unsupervised learning)
  • 无类别标记(class label)

2. 举例:

3. K-means 算法:

3.1 Clustering 中的经典算法,数据挖掘十大经典算法之一

3.2 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

3.3 算法思想: 以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心 的值,直至得到最好的聚类结果

3.4 算法描述:

(1)适当选择c个类的初始中心; (2)在第k次迭代中,对任意一个样本,求其到c各中心的距离,将该样本归到距离最短的中心所在的类; (3)利用均值等方法更新该类的中心值; (4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束, 否则继续迭代。

3.5 算法流程:

输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….data[n], 分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i; (3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数; (4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。

4. 举例

优点:速度快,简单

缺点:最终结果跟初始点选择相关,容易陷入局部最优,需直到k值

Reference:http://croce.ggf.br/dados/K%20mean%20Clustering1.pdf

5.代码

代码语言:javascript
复制
 import numpy as np

# Function: K Means

# -------------

# K-Means is an algorithm that takes in a dataset and a constant

# k and returns k centroids (which define clusters of data in the

# dataset which are similar to one another).

def kmeans(X, k, maxIt):

    numPoints, numDim = X.shape

    dataSet = np.zeros((numPoints, numDim + 1))

    dataSet[:, :-1] = X

    # Initialize centroids randomly

    centroids = dataSet[np.random.randint(numPoints, size = k), :]

    centroids = dataSet[0:2, :]

    #Randomly assign labels to initial centorid

    centroids[:, -1] = range(1, k +1)

    # Initialize book keeping vars.

    iterations = 0

    oldCentroids = None

    # Run the main k-means algorithm

    while not shouldStop(oldCentroids, centroids, iterations, maxIt):

        print "iteration: \n", iterations

        print "dataSet: \n", dataSet

        print "centroids: \n", centroids

        # Save old centroids for convergence test. Book keeping.

        oldCentroids = np.copy(centroids)

        iterations += 1

        # Assign labels to each datapoint based on centroids

        updateLabels(dataSet, centroids)

        # Assign centroids based on datapoint labels

        centroids = getCentroids(dataSet, k)

    # We can get the labels too by calling getLabels(dataSet, centroids)

    return dataSet

# Function: Should Stop

# -------------

# Returns True or False if k-means is done. K-means terminates either

# because it has run a maximum number of iterations OR the centroids

# stop changing.

def shouldStop(oldCentroids, centroids, iterations, maxIt):

    if iterations > maxIt:

        return True

    return np.array_equal(oldCentroids, centroids)  

# Function: Get Labels

# -------------

# Update a label for each piece of data in the dataset. 

def updateLabels(dataSet, centroids):

    # For each element in the dataset, chose the closest centroid. 

    # Make that centroid the element's label.

    numPoints, numDim = dataSet.shape

    for i in range(0, numPoints):

        dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids)

def getLabelFromClosestCentroid(dataSetRow, centroids):

    label = centroids[0, -1];

    minDist = np.linalg.norm(dataSetRow - centroids[0, :-1])

    for i in range(1 , centroids.shape[0]):

        dist = np.linalg.norm(dataSetRow - centroids[i, :-1])

        if dist < minDist:

            minDist = dist

            label = centroids[i, -1]

    print "minDist:", minDist

    return label

# Function: Get Centroids

# -------------

# Returns k random centroids, each of dimension n.

def getCentroids(dataSet, k):

    # Each centroid is the geometric mean of the points that

    # have that centroid's label. Important: If a centroid is empty (no points have

    # that centroid's label) you should randomly re-initialize it.

    result = np.zeros((k, dataSet.shape[1]))

    for i in range(1, k + 1):

        oneCluster = dataSet[dataSet[:, -1] == i, :-1]

        result[i - 1, :-1] = np.mean(oneCluster, axis = 0)

        result[i - 1, -1] = i

    return result

x1 = np.array([1, 1])

x2 = np.array([2, 1])

x3 = np.array([4, 3])

x4 = np.array([5, 4])

testX = np.vstack((x1, x2, x3, x4))

result = kmeans(testX, 2, 10)

print "final result:"

print result

            【注】:本文为麦子学院机器学习课程的学习笔记

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018.01.19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 归类:
  • 2. 举例:
  • 3. K-means 算法:
  • 4. 举例
  • 5.代码
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档