前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >斯坦福CS231n项目实战(三):Softmax线性分类

斯坦福CS231n项目实战(三):Softmax线性分类

作者头像
红色石头
发布2019-05-25 22:44:46
8010
发布2019-05-25 22:44:46
举报

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/79284768

我的网站:红色石头的机器学习之路 我的CSDN:红色石头的专栏 我的知乎:红色石头 我的微博:RedstoneWill的微博 我的GitHub:RedstoneWill的GitHub 我的微信公众号:红色石头的机器学习之路(ID:redstonewill)

Softmax线性分类器的损失函数(Loss function)为:

Li=−logesyi∑Cj=1esj=−syi+log∑j=1CesjLi=−logesyi∑j=1Cesj=−syi+log∑j=1Cesj

L_i=-log\frac{e^{s_{y_i}}}{\sum_{j=1}^Ce^{s_j}}=-s_{y_i}+log \sum_{j=1}^Ce^{s_j}

其中,s=WTxs=WTxs=W^Tx,表示得分函数。yiyiy_i表示正确样本的标签label,C表示总类别个数。该损失函数也称作cross-entropy loss。

实际运算过程中,因为有幂指数,为了避免数值过大,我们一般对得分函数s进行一些数值处理。处理原理如下:

esyi∑Cj=1esj=DesyiD∑Cj=1esj=esyi+logD∑Cj=1esj+logDesyi∑j=1Cesj=DesyiD∑j=1Cesj=esyi+logD∑j=1Cesj+logD

\frac{e^{s_{y_i}}}{\sum_{j=1}^Ce^{s_j}}=\frac{De^{s_{y_i}}}{D\sum_{j=1}^Ce^{s_j}}=\frac{e^{s_{y_i}+log D}}{\sum_{j=1}^Ce^{s_j+log D}}

令:

logD=−max(sj)logD=−max(sj)

log D=-max(s_j)

相应的python示例代码为:

代码语言:javascript
复制
scores = np.array([123, 456, 789])    # example with 3 classes and each having large scores
scores -= np.max(scores)    # scores becomes [-666, -333, 0]
p = np.exp(scores) / np.sum(np.exp(scores))

Softmax分类器计算每个类别的概率,其损失函数反应的是真实样本标签label的预测概率,概率越接近1,则loss越接近0。由于引入正则项,超参数λλ\lambda越大,则对权重W的惩罚越大,使得W更小,分布趋于均匀,造成不同类别之间的概率分布也趋于均匀。下面举个例子来说明。

  • 当λλ\lambda较小时:

[1,−2,0]→[e1,e−2,e0]=[2.71,0.14,1]→[0.7,0.04,0.26][1,−2,0]→[e1,e−2,e0]=[2.71,0.14,1]→[0.7,0.04,0.26]

[1, -2, 0] \rightarrow[e^1, e^{-2},e^0]=[2.71, 0.14, 1]\rightarrow[0.7, 0.04, 0.26]

  • 当λλ\lambda较大时:

[0.5,−1,0]→[e0.5,e−1,e0]=[1.65,0.37,1]→[0.55,0.12,0.33][0.5,−1,0]→[e0.5,e−1,e0]=[1.65,0.37,1]→[0.55,0.12,0.33]

[0.5, -1, 0] \rightarrow[e^{0.5}, e^{-1},e^0]=[1.65, 0.37, 1]\rightarrow[0.55, 0.12, 0.33]

由上述例子可见,由于强正则化的影响,概率分布也趋于均匀。但是必须注意的是,概率之间的相对大小即顺序并没有改变。

线性SVM分类器和Softmax线性分类器的主要区别在于损失函数不同。SVM更关注分类正确样本和错误样本之间的距离(Δ=1Δ=1\Delta=1),只要距离大于ΔΔ\Delta,就不在乎到底距离相差多少,忽略细节。而Softmax中每个类别的得分函数都会影响其损失函数的大小。举个例子来说明,类别个数C=3,两个样本的得分函数分别为[10, -10, -10],[10, 9, 9],真实标签为第0类。对于SVM来说,这两个LiLiL_i都为0;但对于Softmax来说,这两个LiLiL_i分别为0.00和0.55,差别很大。

下面是Softmax线性分类器的实例代码,本文详细代码请见我的:

1. Load the CIFAR10 dataset

代码语言:javascript
复制
# Load the raw CIFAR-10 data.
cifar10_dir = 'CIFAR10/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
代码语言:javascript
复制
Training data shape:  (50000, 32, 32, 3)
Training labels shape:  (50000,)
Test data shape:  (10000, 32, 32, 3)
Test labels shape:  (10000,)

Show some CIFAR10 images

代码语言:javascript
复制
classes = ['plane', 'car', 'bird', 'cat', 'dear', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
num_each_class = 7

for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, num_each_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + (y + 1)
        plt.subplot(num_each_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()
这里写图片描述
这里写图片描述

Subsample the data for more efficient code execution

代码语言:javascript
复制
# Split the data into train, val, test sets and dev sets
num_train = 49000
num_val = 1000
num_test = 1000
num_dev = 500

# Validation set
mask = range(num_train, num_train + num_val)
X_val = X_train[mask]
y_val = y_train[mask]

# Train set
mask = range(num_train)
X_train = X_train[mask]
y_train = y_train[mask]

# Test set
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]

# Development set
mask = np.random.choice(num_train, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]

print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
print('Development data shape: ', X_dev.shape)
print('Development labels shape: ', y_dev.shape)
代码语言:javascript
复制
Train data shape:  (49000, 32, 32, 3)
Train labels shape:  (49000,)
Validation data shape:  (1000, 32, 32, 3)
Validation labels shape  (1000,)
Test data shape:  (1000, 32, 32, 3)
Test labels shape:  (1000,)
Development data shape:  (500, 32, 32, 3)
Development labels shape:  (500,)

2. Preprocessing

Reshape the images data into rows

代码语言:javascript
复制
# Preprocessing: reshape the images data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))

print('Train data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('Development data shape: ', X_dev.shape)
代码语言:javascript
复制
Train data shape:  (49000, 3072)
Validation data shape:  (1000, 3072)
Test data shape:  (1000, 3072)
Development data shape:  (500, 3072)

Subtract the mean images

代码语言:javascript
复制
# Processing: subtract the mean images
mean_image = np.mean(X_train, axis=0)
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8'))
plt.show()
这里写图片描述
这里写图片描述
代码语言:javascript
复制
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image

Append the bias dimension of ones

代码语言:javascript
复制
# append the bias dimension of ones (i.e. bias trick)
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
print('Train data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('Development data shape: ', X_dev.shape)
代码语言:javascript
复制
Train data shape:  (49000, 3073)
Validation data shape:  (1000, 3073)
Test data shape:  (1000, 3073)
Development data shape:  (500, 3073)

3. Define a linear Softmax classifier

代码语言:javascript
复制
class Softmax(object):
    def __init__(self):
        self.W = None

    def loss_naive(self, X, y, reg):
        """
        Structured Softmax loss function, naive implementation (with loops).
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i]
        - reg: float, regularization strength
        Return:
        - loss: the loss value between predict value and ground truth
        - dW: gradient of W
        """

        # Initialize loss and dW
        loss = 0.0
        dW = np.zeros(self.W.shape)

        # Compute the loss and dW
        num_train = X.shape[0]
        num_classes = self.W.shape[1]
        for i in range(num_train):
            scores = np.dot(X[i], self.W)
            scores -= np.max(scores)
            correct_class = y[i]
            correct_score = scores[correct_class]
            loss_i = -correct_score + np.log(np.sum(np.exp(scores)))
            loss += loss_i
            for j in range(num_classes):
                softmax_output = np.exp(scores[j]) / np.sum(np.exp(scores))
                if j == correct_class:
                    dW[:,j] += (-1 + softmax_output) * X[i,:]
                else:
                    dW[:,j] += softmax_output * X[i,:]

        loss /= num_train
        loss += 0.5 * reg * np.sum(self.W * self.W)
        dW /= num_train
        dW += reg * self.W

        return loss, dW

    def loss_vectorized(self, X, y, reg):
        """
        Structured Softmax loss function, vectorized implementation (without loops).
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i]
        - reg: float, regularization strength
        Return:
        - loss: the loss value between predict value and ground truth
        - dW: gradient of W
        """

        # Initialize loss and dW
        loss = 0.0
        dW = np.zeros(self.W.shape)

        # Compute the loss and dW
        num_train = X.shape[0]
        num_classes = self.W.shape[1]

        # loss
        scores = np.dot(X, self.W)
        scores -= np.max(scores, axis=1).reshape(-1, 1)
        softmax_output = np.exp(scores) / np.sum(np.exp(scores), axis=1).reshape(-1, 1)
        loss = np.sum(-np.log(softmax_output[range(softmax_output.shape[0]), list(y)]))
        loss /= num_train
        loss += 0.5 * reg * np.sum(self.W * self.W)

        # dW
        dS = softmax_output
        dS[range(dS.shape[0]), list(y)] += -1
        dW = np.dot(X.T, dS)
        dW /= num_train
        dW += reg * self.W

        return loss, dW

    def train(self, X, y, learning_rate = 1e-3, reg = 1e-5, num_iters = 100, 
             batch_size = 200, print_flag = False):
        """
        Train Softmax classifier using SGD
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i], y[i] = c, 0 <= c <= C
        - learning rate: (float) learning rate for optimization
        - reg: (float) regularization strength
        - num_iters: (integer) numbers of steps to take when optimization
        - batch_size: (integer) number of training examples to use at each step
        - print_flag: (boolean) If true, print the progress during optimization
        Outputs:
        - loss_history: A list containing the loss at each training iteration
        """

        loss_history = []
        num_train = X.shape[0]
        dim = X.shape[1]
        num_classes = np.max(y) + 1

        # Initialize W
        if self.W == None:
            self.W = 0.001 * np.random.randn(dim, num_classes)

        # iteration and optimization
        for t in range(num_iters):
            idx_batch = np.random.choice(num_train, batch_size, replace=True)
            X_batch = X[idx_batch]
            y_batch = y[idx_batch]
            loss, dW = self.loss_vectorized(X_batch, y_batch, reg)
            loss_history.append(loss)
            self.W += -learning_rate * dW

            if print_flag and t%100 == 0:
                print('iteration %d / %d: loss %f' % (t, num_iters, loss))

        return loss_history

    def predict(self, X):
        """
        Use the trained weights of Softmax to predict data labels
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
        Outputs:
        - y_pred: A numpy array, predicted labels for the data in X
        """

        y_pred = np.zeros(X.shape[0])
        scores = np.dot(X, self.W)
        y_pred = np.argmax(scores, axis=1)

        return y_pred        

4. Gradient Check

Define loss function

代码语言:javascript
复制
def loss_naive1(X, y, W, reg):
    """
    Structured Softmax loss function, naive implementation (with loops).
    Inputs:
    - X: A numpy array of shape (num_train, D) contain the training data
      consisting of num_train samples each of dimension D
    - y: A numpy array of shape (num_train,) contain the training labels,
      where y[i] is the label of X[i]
    - W: A numpy array of shape (D, C) contain the weights
    - reg: float, regularization strength
    Return:
    - loss: the loss value between predict value and ground truth
    - dW: gradient of W
    """

    # Initialize loss and dW
    loss = 0.0
    dW = np.zeros(W.shape)

    # Compute the loss and dW
    num_train = X.shape[0]
    num_classes = W.shape[1]
    for i in range(num_train):
        scores = np.dot(X[i], W)
        scores -= np.max(scores)
        correct_class = y[i]
        correct_score = scores[correct_class]
        loss_i = -correct_score + np.log(np.sum(np.exp(scores)))
        loss += loss_i
        for j in range(num_classes):
            softmax_output = np.exp(scores[j]) / np.sum(np.exp(scores))
            if j == correct_class:
                dW[:,j] += (-1 + softmax_output) * X[i,:]
            else:
                dW[:,j] += softmax_output * X[i,:]

    loss /= num_train
    loss += 0.5 * reg * np.sum(W * W)
    dW /= num_train
    dW += reg * W

    return loss, dW

def loss_vectorized1(X, y, W, reg):
    """
    Structured Softmax loss function, vectorized implementation (without loops).
    Inputs:
    - X: A numpy array of shape (num_train, D) contain the training data
      consisting of num_train samples each of dimension D
    - y: A numpy array of shape (num_train,) contain the training labels,
      where y[i] is the label of X[i]
    - W: A numpy array of shape (D, C) contain the weights
    - reg: float, regularization strength
    Return:
    - loss: the loss value between predict value and ground truth
    - dW: gradient of W
    """

    # Initialize loss and dW
    loss = 0.0
    dW = np.zeros(W.shape)

    # Compute the loss and dW
    num_train = X.shape[0]
    num_classes = W.shape[1]

    # loss
    scores = np.dot(X, W)
    scores -= np.max(scores, axis=1).reshape(-1, 1)
    softmax_output = np.exp(scores) / np.sum(np.exp(scores), axis=1).reshape(-1, 1)
    loss = np.sum(-np.log(softmax_output[range(softmax_output.shape[0]), list(y)]))
    loss /= num_train
    loss += 0.5 * reg * np.sum(W * W)

    # dW
    dS = softmax_output
    dS[range(dS.shape[0]), list(y)] += -1
    dW = np.dot(X.T, dS)
    dW /= num_train
    dW += reg * W

    return loss, dW

Gradient check

代码语言:javascript
复制
from gradient_check import grad_check_sparse
import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001

# Without regularization
loss, dW = loss_naive1(X_dev, y_dev, W, 0)
f = lambda W: loss_naive1(X_dev, y_dev, W, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, dW)

# With regularization
loss, dW = loss_naive1(X_dev, y_dev, W, 5e1)
f = lambda W: loss_naive1(X_dev, y_dev, W, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, dW)
代码语言:javascript
复制
numerical: 1.382074 analytic: 1.382074, relative error: 2.603780e-08
numerical: 0.587997 analytic: 0.587997, relative error: 2.764543e-08
numerical: 2.466843 analytic: 2.466843, relative error: 8.029571e-09
numerical: -1.840196 analytic: -1.840196, relative error: 1.781980e-09
numerical: 1.444645 analytic: 1.444645, relative error: 6.200972e-08
numerical: -1.381959 analytic: -1.381959, relative error: 1.643225e-08
numerical: 1.122692 analytic: 1.122692, relative error: 1.600617e-08
numerical: 1.249459 analytic: 1.249459, relative error: 2.936177e-09
numerical: 1.556929 analytic: 1.556929, relative error: 1.452262e-08
numerical: 1.976238 analytic: 1.976238, relative error: 1.619212e-08
numerical: 2.308430 analytic: 2.308430, relative error: 7.769452e-10
numerical: -2.698441 analytic: -2.698440, relative error: 2.672068e-08
numerical: 1.991475 analytic: 1.991475, relative error: 3.035301e-08
numerical: -1.891048 analytic: -1.891048, relative error: 1.407403e-08
numerical: 1.409085 analytic: 1.409085, relative error: 1.916174e-08
numerical: 1.688600 analytic: 1.688600, relative error: 6.298778e-10
numerical: -0.140043 analytic: -0.140043, relative error: 7.654000e-08
numerical: -0.563577 analytic: -0.563577, relative error: 5.109196e-08
numerical: 0.224879 analytic: 0.224879, relative error: 1.218421e-07
numerical: -5.497099 analytic: -5.497099, relative error: 1.992705e-08

5. Stochastic Gradient Descent

代码语言:javascript
复制
softmax = Softmax()
loss_history = softmax.train(X_train, y_train, learning_rate = 1e-7, reg = 2.5e4, num_iters = 1500, 
             batch_size = 200, print_flag = True)
代码语言:javascript
复制
iteration 0 / 1500: loss 389.013148
iteration 100 / 1500: loss 235.704700
iteration 200 / 1500: loss 142.948192
iteration 300 / 1500: loss 87.236112
iteration 400 / 1500: loss 53.494956
iteration 500 / 1500: loss 33.153764
iteration 600 / 1500: loss 20.907861
iteration 700 / 1500: loss 13.442687
iteration 800 / 1500: loss 8.929345
iteration 900 / 1500: loss 6.238832
iteration 1000 / 1500: loss 4.559590
iteration 1100 / 1500: loss 3.501153
iteration 1200 / 1500: loss 2.924789
iteration 1300 / 1500: loss 2.552109
iteration 1400 / 1500: loss 2.370926
代码语言:javascript
复制
# Plot the loss_history
plt.plot(loss_history)
plt.xlabel('Iteration number')
plt.ylabel('loss value')
plt.show()
这里写图片描述
这里写图片描述
代码语言:javascript
复制
# Use softmax classifier to predict
# Training set
y_pred = softmax.predict(X_train)
num_correct = np.sum(y_pred == y_train)
accuracy = np.mean(y_pred == y_train)
print('Training correct %d/%d: The accuracy is %f' % (num_correct, X_train.shape[0], accuracy))

# Test set
y_pred = softmax.predict(X_test)
num_correct = np.sum(y_pred == y_test)
accuracy = np.mean(y_pred == y_test)
print('Test correct %d/%d: The accuracy is %f' % (num_correct, X_test.shape[0], accuracy))
代码语言:javascript
复制
Training correct 17023/49000: The accuracy is 0.347408
Test correct 359/1000: The accuracy is 0.359000

6. Validation and Test

Cross-validation

代码语言:javascript
复制
learning_rates = [1.4e-7, 1.5e-7, 1.6e-7]
regularization_strengths = [8000.0, 9000.0, 10000.0, 11000.0, 18000.0, 19000.0, 20000.0, 21000.0]

results = {}
best_lr = None
best_reg = None
best_val = -1   # The highest validation accuracy that we have seen so far.
best_softmax = None # The LinearSVM object that achieved the highest validation rate.

for lr in learning_rates:
    for reg in regularization_strengths:
        softmax = Softmax()
        loss_history = softmax.train(X_train, y_train, learning_rate = lr, reg = reg, num_iters = 3000)
        y_train_pred = softmax.predict(X_train)
        accuracy_train = np.mean(y_train_pred == y_train)
        y_val_pred = softmax.predict(X_val)
        accuracy_val = np.mean(y_val_pred == y_val)
        results[(lr, reg)] = accuracy_train, accuracy_val
        if accuracy_val > best_val:
            best_lr = lr
            best_reg = reg
            best_val = accuracy_val
            best_softmax = softmax
        print('lr: %e reg: %e train accuracy: %f val accuracy: %f' %
              (lr, reg, results[(lr, reg)][0], results[(lr, reg)][1]))
print('Best validation accuracy during cross-validation:\nlr = %e, reg = %e, best_val = %f' %
      (best_lr, best_reg, best_val)) 
代码语言:javascript
复制
lr: 1.400000e-07 reg: 8.000000e+03 train accuracy: 0.376388 val accuracy: 0.381000
lr: 1.400000e-07 reg: 9.000000e+03 train accuracy: 0.378061 val accuracy: 0.393000
lr: 1.400000e-07 reg: 1.000000e+04 train accuracy: 0.375061 val accuracy: 0.394000
lr: 1.400000e-07 reg: 1.100000e+04 train accuracy: 0.370918 val accuracy: 0.389000
lr: 1.400000e-07 reg: 1.800000e+04 train accuracy: 0.361857 val accuracy: 0.378000
lr: 1.400000e-07 reg: 1.900000e+04 train accuracy: 0.354327 val accuracy: 0.373000
lr: 1.400000e-07 reg: 2.000000e+04 train accuracy: 0.357531 val accuracy: 0.370000
lr: 1.400000e-07 reg: 2.100000e+04 train accuracy: 0.351837 val accuracy: 0.374000
lr: 1.500000e-07 reg: 8.000000e+03 train accuracy: 0.380429 val accuracy: 0.387000
lr: 1.500000e-07 reg: 9.000000e+03 train accuracy: 0.375959 val accuracy: 0.393000
lr: 1.500000e-07 reg: 1.000000e+04 train accuracy: 0.373857 val accuracy: 0.397000
lr: 1.500000e-07 reg: 1.100000e+04 train accuracy: 0.371918 val accuracy: 0.386000
lr: 1.500000e-07 reg: 1.800000e+04 train accuracy: 0.359735 val accuracy: 0.379000
lr: 1.500000e-07 reg: 1.900000e+04 train accuracy: 0.359796 val accuracy: 0.373000
lr: 1.500000e-07 reg: 2.000000e+04 train accuracy: 0.352041 val accuracy: 0.365000
lr: 1.500000e-07 reg: 2.100000e+04 train accuracy: 0.356531 val accuracy: 0.372000
lr: 1.600000e-07 reg: 8.000000e+03 train accuracy: 0.378265 val accuracy: 0.394000
lr: 1.600000e-07 reg: 9.000000e+03 train accuracy: 0.377980 val accuracy: 0.391000
lr: 1.600000e-07 reg: 1.000000e+04 train accuracy: 0.371429 val accuracy: 0.389000
lr: 1.600000e-07 reg: 1.100000e+04 train accuracy: 0.374224 val accuracy: 0.391000
lr: 1.600000e-07 reg: 1.800000e+04 train accuracy: 0.360796 val accuracy: 0.386000
lr: 1.600000e-07 reg: 1.900000e+04 train accuracy: 0.355592 val accuracy: 0.371000
lr: 1.600000e-07 reg: 2.000000e+04 train accuracy: 0.356122 val accuracy: 0.368000
lr: 1.600000e-07 reg: 2.100000e+04 train accuracy: 0.354143 val accuracy: 0.367000
Best validation accuracy during cross-validation:
lr = 1.500000e-07, reg = 1.000000e+04, best_val = 0.397000

Visualize the cross-validation result

代码语言:javascript
复制
import math

x_scatter = [math.log10(x[0]) for x in results]
y_scatter = [math.log10(x[1]) for x in results]

maker_size = 100
plt.figure(figsize=(10,10))

# training accuracy
plt.subplot(2, 1, 1)
colors = [results[x][0] for x in results]
plt.scatter(x_scatter, y_scatter, maker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')

# validation accuracy
plt.subplot(2, 1, 2)
colors = [results[x][1] for x in results]
plt.scatter(x_scatter, y_scatter, maker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.show()
这里写图片描述
这里写图片描述

Use the best softmax to test

代码语言:javascript
复制
y_pred = best_softmax.predict(X_test)
num_correct = np.sum(y_pred == y_test)
accuracy = np.mean(y_pred == y_test)
print('Test correct %d/%d: The accuracy is %f' % (num_correct, num_test, accuracy))
代码语言:javascript
复制
Test correct 379/1000: The accuracy is 0.379000

Visualize the weights for each class

代码语言:javascript
复制
W = best_softmax.W[:-1,:]    # delete the bias
W = np.reshape(W, (32, 32, 3, 10))
W_max, W_min = np.max(W), np.min(W)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(10,5))
for i in range(10):
    plt.subplot(2, 5, i+1)
    # Rescale the weights to be between 0 and 255
    imgW = 255.0 * (W[:,:,:,i] - W_min) / (W_max - W_min)
    plt.imshow(imgW.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])
这里写图片描述
这里写图片描述
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年02月08日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. Load the CIFAR10 dataset
    • Show some CIFAR10 images
      • Subsample the data for more efficient code execution
      • 2. Preprocessing
        • Reshape the images data into rows
          • Subtract the mean images
            • Append the bias dimension of ones
            • 3. Define a linear Softmax classifier
            • 4. Gradient Check
              • Define loss function
                • Gradient check
                • 5. Stochastic Gradient Descent
                • 6. Validation and Test
                  • Cross-validation
                    • Visualize the cross-validation result
                      • Use the best softmax to test
                        • Visualize the weights for each class
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档