专栏首页强仔仔字符串匹配的KMP算法

字符串匹配的KMP算法

关于字符串匹配KMP算法其实不难,只要理解字符串下一步匹配需要移动的个数就可以了,但是说是这么说,实际理解肯定会有或多或少的问题,要是大家看完之后还是有问题有疑问的同学,可以再文章底部加我~

字符串匹配的KMP算法

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;   - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;   - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;   - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;   - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;   - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;   - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

(完)

最后要是还是不清楚的话,可以参考这篇文章:https://www.cnblogs.com/kingofkai/p/6178773.html

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 深度学习词汇表(四)

    Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能...

    AiTechYun
  • Tesla's Full Self-Driving 视频

    如果传统方法可行,为什么AlphaGo需要深度学习;现在只有tesla实现了数据收集的闭环,如果所有场景都是训练集数据,实现的无人驾驶效果会怎么样?

    用户1908973
  • AIoT的人脸识别方案(上)

    我一定是对这颗i.MX RT的MCU太过于偏爱,之前已经在上面做了一个语音识别技术方案(见《AIoT的语音识别方案》),但总觉得我们还能挑战一下更复杂的应用,对...

    刘盼
  • AIoT的人脸识别方案(下)

    这是本文的下半部分,本文的上半部分以一个演示视频介绍了该人脸识别方案,并介绍了方案的软硬件环境和框架。

    刘盼
  • 策略梯度搜索:不使用搜索树的在线规划和专家迭代 | 技术头条

    作者 | Thomas Anthony、Robert Nishihara、Philipp Moritz、

    AI科技大本营
  • 驾驭Java线程池:定制与扩展

    Executor框架可以帮助将任务的提交和任务的执行解耦合,用户只需要将任务提交给Executor之后,其自会按照既定的执行策略来执行任务。但是要注意并不是所有...

    lyb-geek
  • Tesla Autonomy Day和Full Self-Driving视频 产业链软硬件数据闭环 自动驾驶的苹果

    https://www.youtube.com/watch?v=Ucp0TTmvqOE&feature=share

    用户1908973
  • 机器学习失败的6种原因,你中招了吗?

    一般来说,学习的过程通常意味着先犯错误以及选择错误的道路,然后再想明白如何在将来避免这些陷阱。机器学习也不例外。

    CDA数据分析师
  • Python 闭包坑点

    上篇参考:Python 闭包使用注意点,接下来,介绍使用闭包,经常会犯的一个错误:演示代码如下,

    double
  • AI「王道」逻辑编程的复兴?清华提出神经逻辑机,已入选ICLR

    这篇论文被接受为 ICLR 2019 的 Poster,它的评分为 6、5、7。正如评审该论文的领域主席所言,这篇论文提出了一个非常有意思的正向链模型,它利用了...

    机器之心

扫码关注云+社区

领取腾讯云代金券