前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >torch06:ResNet--Cifar识别和自己数据集

torch06:ResNet--Cifar识别和自己数据集

作者头像
MachineLP
发布2019-05-26 20:46:48
6220
发布2019-05-26 20:46:48
举报
文章被收录于专栏:小鹏的专栏小鹏的专栏

本小节使用torch搭建ResNet模型,训练和测试:

(1)定义模型超参数:迭代次数、批量大小、学习率。

(2)定义训练数据,加餐部分是使用自己的数据集:(可参考:https://cloud.tencent.com/developer/article/1997099

(3)定义模型(定义残差神经网络)。

(4)定义损失函数,选用适合的损失函数。

(5)定义优化算法(SGD、Adam等)。

(6)保存模型。

---------------------------------我是可爱的分割线---------------------------------

代码部分:

代码语言:javascript
复制
# coding=utf-8
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# 判定GPU是否存在
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定义超参数
num_epochs = 80
learning_rate = 0.001

# 定义数据预处理的方式
transform = transforms.Compose([
    transforms.Pad(4),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()])

# CIFAR-10 数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data/',
                                             train=True, 
                                             transform=transform,
                                             download=True)

test_dataset = torchvision.datasets.CIFAR10(root='./data/',
                                            train=False, 
                                            transform=transforms.ToTensor())

# 构建数据管道, 使用自己的数据集请参考:https://blog.csdn.net/u014365862/article/details/80506147 
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=100, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=100, 
                                          shuffle=False)

# 3x3 卷积
def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                     stride=stride, padding=1, bias=False)

# 定义残差块
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

# 定义残差网络
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[0], 2)
        self.layer3 = self.make_layer(block, 64, layers[1], 2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64, num_classes)
        
    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)
    
    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out

# 定义模型    
model = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device)


# 损失函数和优化算法
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 定义学习率衰减
def update_lr(optimizer, lr):    
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

# 训练模型
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # 前向传播+计算loss
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 后向传播+调整参数
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每100个batch打印一次数据  
        if (i+1) % 100 == 0:
            print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

    # 学习率衰减
    if (epoch+1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)

# 模型测试部分  
# 测试阶段不需要计算梯度,注意
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# 保存模型参数 
torch.save(model.state_dict(), 'resnet.ckpt')

加餐:在自己数据集上使用:

其中,train.txt中的数据格式:

gender/0male/0(2).jpg 1

gender/0male/0(3).jpeg 1

gender/0male/0(1).jpg 0

test.txt中的数据格式如下:

gender/0male/0(3).jpeg 1

gender/0male/0(1).jpg 0

gender/1female/1(6).jpg 1

代码部分:

代码语言:javascript
复制
# coding=utf-8
import torch   
import torch.nn as nn  
import torchvision  
from torch.utils.data import Dataset, DataLoader      
from torchvision import transforms, utils   
from PIL import Image   


# 判定GPU是否存在
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定义超参数
batch_size = 16
num_epochs = 5
learning_rate = 0.001

def default_loader(path):      
    # 注意要保证每个batch的tensor大小时候一样的。      
    return Image.open(path).convert('RGB')      
      
class MyDataset(Dataset):      
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):      
        fh = open(txt, 'r')      
        imgs = []      
        for line in fh:      
            line = line.strip('\n')      
            # line = line.rstrip()      
            words = line.split(' ')      
            imgs.append((words[0],int(words[1])))      
        self.imgs = imgs      
        self.transform = transform      
        self.target_transform = target_transform      
        self.loader = loader      
          
    def __getitem__(self, index):      
        fn, label = self.imgs[index]      
        img = self.loader(fn)      
        if self.transform is not None:      
            img = self.transform(img)      
        return img,label      
          
    def __len__(self):      
        return len(self.imgs)      
      
def get_loader(dataset='train.txt', crop_size=128, image_size=32, batch_size=2, mode='train', num_workers=1):      
    """Build and return a data loader."""      
    transform = []      
    if mode == 'train':      
        transform.append(transforms.RandomHorizontalFlip())      
    transform.append(transforms.CenterCrop(crop_size))      
    transform.append(transforms.Resize(image_size))      
    transform.append(transforms.ToTensor())      
    transform.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))      
    transform = transforms.Compose(transform)      
    train_data=MyDataset(txt=dataset, transform=transform)      
    data_loader = DataLoader(dataset=train_data,      
                                  batch_size=batch_size,      
                                  shuffle=(mode=='train'),      
                                  num_workers=num_workers)      
    return data_loader      
# 注意要保证每个batch的tensor大小时候一样的。      
# data_loader = DataLoader(train_data, batch_size=2,shuffle=True)      
train_loader = get_loader('train.txt', batch_size=batch_size)      
print(len(train_loader))      
test_loader = get_loader('test.txt', batch_size=batch_size)      
print(len(test_loader))  

# 3x3 卷积
def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                     stride=stride, padding=1, bias=False)

# 定义残差块
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

# 定义残差网络
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[0], 2)
        self.layer3 = self.make_layer(block, 64, layers[1], 2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64, num_classes)
        
    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)
    
    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out

# 定义模型    
model = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device)


# 损失函数和优化算法
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 定义学习率衰减
def update_lr(optimizer, lr):    
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

# 训练模型
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # 前向传播+计算loss
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 后向传播+调整参数
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每100个batch打印一次数据  
        if (i+1) % 100 == 0:
            print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

    # 学习率衰减
    if (epoch+1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)

# 模型测试部分  
# 测试阶段不需要计算梯度,注意
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# 保存模型参数 
torch.save(model.state_dict(), 'resnet.ckpt')

总结:

本节使用ResNet训练Cifar识别、自己数据的识别。

上面加餐部分需要生成自己的txt文件(数据+标签),可以参考这个,自己以前调试用的:https://github.com/MachineLP/py_workSpace/blob/master/g_img_path.py

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年06月02日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档