首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >相互递归(3)

相互递归(3)

作者头像
窗户
修改2019-09-11 12:27:04
4000
修改2019-09-11 12:27:04
举报
文章被收录于专栏:窗户窗户窗户
  版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖。如要转贴,必须注明原文网址

  http://www.cnblogs.com/Colin-Cai/p/10963080.html 

  作者:窗户

  QQ/微信:6679072

  E-mail:6679072@qq.com

  我们根据上一章最开始的相互递归转一般递归的方法,结合Y Combinator,来对第一章的append实现做一下测试。

(define (append . lst)
 (if (null? lst)
  '()
  ((apply _append (cdr lst)) (car lst))
 )
)

(define (_append . lst)
 (cond
  ((null? lst) (lambda (x) x))
  ((null? (cdr lst))
   (lambda (x)
    (if (null? x)
     (car lst)
     (cons (car x) ((_append (car lst)) (cdr x)))
    )
   )
  )
  (else (_append (apply append lst)))
 )
)

  上述实现中,append和_append互相递归。

  按照第二章中相互递归转普通递归的方法,我们可以定义一个高阶函数append-high,

  使得(append-high 1)就是append,(append-high 2)就是_append。

  于是我们可以这样写,append-high带一个参数,如果参数为1,则是上述append的定义,否则则为上述_append的定义,并在定义中把append和_append都用append-high表示。代码如下:

(define (append-high n)
 (if (= n 1)
  (lambda lst
   (if (null? lst)
    '()
    ((apply (append-high 2)(cdr lst)) (car lst))))
  (lambda lst
   (if (null? lst)
    (lambda (x) x)
    (if (null? (cdr lst))
     (lambda (x)
      (if (null? x)
       (car lst)
       (cons (car x) (((append-high 2)(car lst)) (cdr x)))))
     ((append-high 2) (apply (append-high 1) lst)))))))

  完全写成lambda的方式(实际上,define (funname arg)这样的写法是语法糖),以便于后面全用lambda演算。

  代码如下:

(define append-high
 (lambda (n)
  (if (= n 1)
   (lambda lst
    (if (null? lst)
     '()
     ((apply (append-high 2)(cdr lst)) (car lst))))
   (lambda lst
    (if (null? lst)
     (lambda (x) x)
     (if (null? (cdr lst))
      (lambda (x)
       (if (null? x)
        (car lst)
        (cons (car x) (((append-high 2)(car lst)) (cdr x)))))
      ((append-high 2) (apply (append-high 1) lst))))))))

  以append-high为不动点的函数则为以下:

(define fix-append-high
 (lambda (append-high)
  (lambda (n)
   (if (null? n)
    (lambda lst
     (if (null? lst)
      '()
      ((apply (append-high '(()))(cdr lst)) (car lst))))
    (lambda lst
     (if (null? lst)
      (lambda (x) x)
      (if (null? (cdr lst))
       (lambda (x)
        (if (null? x)
         (car lst)
         (cons (car x) (((append-high '(()))(car lst)) (cdr x)))))
       ((append-high '(())) (apply (append-high '()) lst)))))))))

  于是这个函数前面接上Y Combinator就得到了append-high函数,再加上参数1,就是我们最终要实现的append函数。

  一起写了,如下:

(define append
 (
  ((lambda (f)
    ((lambda (g) (g g))(lambda (x) (f (lambda s (apply (x x) s))))))
   (lambda (append-high)
    (lambda (n)
     (if (null? n)
      (lambda lst
       (if (null? lst)
        '()
        ((apply (append-high 2)(cdr lst)) (car lst))))
      (lambda lst
       (if (null? lst)
        (lambda (x) x)
        (if (null? (cdr lst))
         (lambda (x)
          (if (null? x)
           (car lst)
           (cons (car x) (((append-high 2)(car lst)) (cdr x)))))
         ((append-high 2) (apply (append-high 1) lst)))))))))
  1)
)

  于是,到这里,我们完全用lambda演算写出来的append就这么实现了,虽然看上去的确不是那么好懂,lambda漫天飞。

  实现看上去这么抽象的函数真的好用吗?测试一下,看看结果对不对?

(append '() '(1) '(2 3) '() '(4 5 6) '(7) '(8) '(9 10 11))

  得到结果

(1 2 3 4 5 6 7 8 9 10 11)

  上述结果说明,函数实现的还是可以用的。

  第一章最后给出的三个函数互相递归,我们也还是验证一下。

(define (type0? x)
 (if (= x 0)
  #t
  (type2? (- x 1))
 )
)
(define (type1? x)
 (if (= x 0)
  #f
  (type0? (- x 1))
 )
)
(define (type2? x)
 (if (= x 0)
  #f
  (type1? (- x 1))
 )
)

  建立一个高阶函数type-high,让(type-high 0)就是type0?,(type-high 1)就是type1?,(type-high 2)就是type2?

  注意,所有都用lambda来表示。

(define type-high
 (lambda (n)
  (cond
   ((= n 0) (lambda (x) (if (= x 0) #t ((type-high 2) (- x 1)))))
   ((= n 1) (lambda (x) (if (= x 0) #f ((type-high 0) (- x 1)))))
   (else (lambda (x) (if (= x 0) #f ((type-high 1) (- x 1)))))
  )
 )
)

  type-high使用Y Combinator匿名递归,实现则为如下

(define type-high
 (
  (lambda (f)
   ((lambda (g) (g g))(lambda (x) (f (lambda s (apply (x x) s)))))
  )
  (lambda (f)
   (lambda (n)
    (cond
     ((= n 0) (lambda (x) (if (= x 0) #t ((f 2) (- x 1)))))
     ((= n 1) (lambda (x) (if (= x 0) #f ((f 0) (- x 1)))))
     (else (lambda (x) (if (= x 0) #f ((f 1) (- x 1)))))
    )
   )
  )
 )
)

  之前的type0? type1? type2?分别是(type-high 0)、(type-high 1)、(type-high 2)

  于是我们可以用以下来验证

(for-each
 (lambda (x) (display x)(newline))
 (map
  (lambda (x)
   (cons
    x
    (map (lambda (f) (f x)) (map (lambda (n) (type-high n)) '(0 1 2)))
   )
  )
  (range 20)
 )
)

  验证结果没有问题

(0 #t #f #f) (1 #f #t #f) (2 #f #f #t) (3 #t #f #f) (4 #f #t #f) (5 #f #f #t) (6 #t #f #f) (7 #f #t #f) (8 #f #f #t) (9 #t #f #f) (10 #f #t #f) (11 #f #f #t) (12 #t #f #f) (13 #f #t #f) (14 #f #f #t) (15 #t #f #f) (16 #f #t #f) (17 #f #f #t) (18 #t #f #f) (19 #f #t #f)

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019-06-02 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档