前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >初学者|不能不会的NLTK

初学者|不能不会的NLTK

作者头像
yuquanle
修改2019-07-12 17:55:26
1.4K0
修改2019-07-12 17:55:26
举报
文章被收录于专栏:AI小白入门

点击上方蓝色字体,关注AI小白入门哟

跟着博主的脚步,每天进步一点点

本文简绍了NLTK的使用方法,这是一个被称为“使用Python进行计算语言学教学和工作的绝佳工具”。

简介

NLTK被称为“使用Python进行计算语言学教学和工作的绝佳工具”。它为50多种语料库和词汇资源(如WordNet)提供了易于使用的界面,还提供了一套用于分类,标记化,词干化,标记,解析和语义推理的文本处理库。接下来然我们一起来实战学习一波~~

官网地址:http://www.nltk.org/

Github地址:https://github.com/nltk/nltk

实战

1.Tokenize

代码语言:javascript
复制
# 安装:pip install nltk
import nltk
sentence = 'I love natural language processing!'
tokens = nltk.word_tokenize(sentence)
print(tokens)

['I', 'love', 'natural', 'language', 'processing', '!']

2.词性标注

代码语言:javascript
复制
tagged = nltk.pos_tag(tokens)
print(tagged)

[('I', 'PRP'), ('love', 'VBP'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('!', '.')]

3.命名实体识别

代码语言:javascript
复制
# 下载模型:nltk.download('maxent_ne_chunker')
nltk.download('maxent_ne_chunker')
[nltk_data] Downloading package maxent_ne_chunker to
[nltk_data]     C:\Users\yuquanle\AppData\Roaming\nltk_data...
[nltk_data]   Unzipping chunkers\maxent_ne_chunker.zip.
True

nltk.download('words')
[nltk_data] Downloading package words to
[nltk_data]     C:\Users\yuquanle\AppData\Roaming\nltk_data...
[nltk_data]   Unzipping corpora\words.zip.
True

entities = nltk.chunk.ne_chunk(tagged)
print(entities)

(S I/PRP love/VBP natural/JJ language/NN processing/NN !/.)

4.下载语料库

代码语言:javascript
复制
# 例如:下载brown
# 更多语料库:http://www.nltk.org/howto/corpus.html
nltk.download('brown')
[nltk_data] Downloading package brown to
[nltk_data]     C:\Users\yuquanle\AppData\Roaming\nltk_data...
[nltk_data]   Package brown is already up-to-date!
True

from nltk.corpus import brown
brown.words()

['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]

5.度量

代码语言:javascript
复制
# percision:正确率
# recall:召回率
# f_measure
from nltk.metrics import precision, recall, f_measure
reference = 'DET NN VB DET JJ NN NN IN DET NN'.split()
test = 'DET VB VB DET NN NN NN IN DET NN'.split()
reference_set = set(reference)
test_set = set(test)
print("precision:" + str(precision(reference_set, test_set)))
print("recall:" + str(recall(reference_set, test_set)))
print("f_measure:" + str(f_measure(reference_set,
test_set)))

precision:1.0
recall:0.8
f_measure:0.8888888888888888

6.词干提取(Stemmers)

代码语言:javascript
复制
# Porter stemmer
from nltk.stem.porter import *
# 创建词干提取器
stemmer = PorterStemmer()
plurals = ['caresses', 'flies', 'dies', 'mules', 'denied']
singles = [stemmer.stem(plural) for plural in plurals]
print(' '.join(singles))

caress fli die mule deni

# Snowball stemmer
from nltk.stem.snowball import SnowballStemmer
print(" ".join(SnowballStemmer.languages))
arabic danish dutch english finnish french german hungarian italian norwegian porter portuguese romanian russian spanish swedish
# 指定语言
stemmer = SnowballStemmer("english")
print(stemmer.stem("running"))

run

7.SentiWordNet接口

代码语言:javascript
复制
# 下载sentiwordnet词典
import nltk
nltk.download('sentiwordnet')
[nltk_data] Downloading package sentiwordnet to
[nltk_data]     C:\Users\yuquanle\AppData\Roaming\nltk_data...
[nltk_data]   Unzipping corpora\sentiwordnet.zip.
True

# SentiSynsets: synsets(同义词集)的情感值
from nltk.corpus import sentiwordnet as swn
breakdown = swn.senti_synset('breakdown.n.03')
print(breakdown)
print(breakdown.pos_score())
print(breakdown.neg_score())
print(breakdown.obj_score())

<breakdown.n.03: PosScore=0.0 NegScore=0.25>
0.0
0.25
0.75

# Lookup(查看)
print(list(swn.senti_synsets('slow')))
[SentiSynset('decelerate.v.01'), SentiSynset('slow.v.02'), SentiSynset('slow.v.03'), SentiSynset('slow.a.01'), SentiSynset('slow.a.02'), SentiSynset('dense.s.04'), SentiSynset('slow.a.04'), SentiSynset('boring.s.01'), SentiSynset('dull.s.08'), SentiSynset('slowly.r.01'), SentiSynset('behind.r.03')]
happy = swn.senti_synsets('happy', 'a')
print(list(happy))

[SentiSynset('happy.a.01'), SentiSynset('felicitous.s.02'), SentiSynset('glad.s.02'), SentiSynset('happy.s.04')]

更多用法:http://www.nltk.org/howto/index.html

代码已上传:

https://github.com/yuquanle/StudyForNLP/blob/master/NLPtools/NLTKDemo.ipynb

The End

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-07-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI小白入门 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档