越接近硬件的阶层为底层,越接近应用程序的层为高层。无论接收端还是发送端,每一阶层只认识对方的同一阶层数据。客户端通过应用程序将数据放入第七层,再将第七层数据打包到第六层,依次打包到第一层,然后传送给接收端,接收端主机由第一层开始,依序打开每个包,然后交给对应的阶层处理。
TCP/IP 也是使用 OSI 七层协议的观念, 所以同 样具有分层的架构,只是将它简化为四层。
从图中可以发现,TCP/IP 将应用、表现、会谈三层整合成一个应用层,在 应用层上面可以实作的程序协议有 HTTP, SMTP, DNS 等等。 传送层则没有变,不过依 据传送的可靠性又将封包格式分为连接导向的 TCP 及非连接导向的 UDP 封包格式。网 络层也没有变,主要内容是提供了 IP 封包,并可选择最佳路由来到达目标 IP 地址。数据链结层与物理层则整合成为一个链结层,包括定义硬件讯号、 讯框转位串的编码 等等,因此主要与硬件 (不论是区网还是广域网) 有关。
主要防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。
如果使用的是两次握手建立连接,假设有这样一种场景,客户端发送了第一个请求连接并且没有丢失,只是因为在网络结点中滞留的时间太长了,由于TCP的客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时此前滞留的那一次请求连接,网络通畅了到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的浪费。
如果采用的是三次握手,就算是那一次失效的报文传送过来了,服务端接受到了那条失效报文并且回复了确认报文,但是客户端不会再次发出确认。由于服务器收不到确认,就知道客户端并没有请求连接。
UDP和TCP不一样,UDP不提供可靠的传输模式,因为他不是面向连接的一个机制,因为在UDP的传输过程中,接收端在接收到封包后,不会回复响应封包(ACK)给发送端,所以封包并没有像TCP封包有较为严密的检查机制。UDP 可以在 Data 处填入更多的数据了。同时 UDP 比较 适合需要实时反应的一些数据流,例如影像实时传送软件等, 就可以使用这类的封包传送。
MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值。
第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。
第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。
为什么建立连接是三次握手,关闭连接确是四次挥手呢?
建立连接的时候, 服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。 而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。
TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75分钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。
参考文章:
https://blog.csdn.net/qzcsu/article/details/72861891