膨胀了!我要手写QQ底层!(附源码)

from:https://juejin.im/post/5c97ae12e51d45580b681b0b

一直想写一篇关于im即时通讯分享的文章,无奈工作太忙,很难抽出时间。今天终于从公司离职了,打算好好休息几天再重新找工作,趁时间空闲,决定静下心来写一篇文章,毕竟从前辈那里学到了很多东西。工作了五年半,这三四年来一直在做社交相关的项目,有直播即时通讯短视频分享社区论坛等产品,深知即时通讯技术在一个项目中的重要性,本着开源分享的精神,也趁这机会总结一下,所以写下这篇文章,文中有不对之处欢迎批评与指正。

本文将介绍:

  • Protobuf序列化
  • TCP拆包与粘包
  • 长连接握手认证
  • 心跳机制
  • 重连机制
  • 消息重发机制
  • 读写超时机制
  • 离线消息
  • 线程池
  • AIDL跨进程通信

本想花一部分时间介绍一下利用AIDL实现多进程通信,提升应用保活率,无奈这种方法在目前大部分Android新版本上已失效,而且也比较复杂,所以考虑再三,把AIDL这一部分去掉,需要了解的童鞋可以私信我。先来看看效果,由于Gif超过微信限制,请大家移步查看:

https://user-gold-cdn.xitu.io/2019/4/22/16a42c85e653b88c?imageslim

不想看文章的同学可以直接移步到Github fork源码:github地址(https://github.com/FreddyChen/NettyChat)。接下来,让我们进入正题。

为什么使用TCP?

这里需要简单解释一下,TCP/UDP/WebSocket的区别。这里就很好地解释了TCP/UDP的优缺点和区别(https://www.cnblogs.com/Leonardo-li/p/8206945.html),以及适用场景,简单地总结一下:

  • 优点:
    • TCP的优点体现在稳定可靠上,在传输数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完之后,还会断开连接用来节约系统资源。
    • UDP的优点体现在比TCP稍安全,UDP没有TCP拥有的各种机制,是一个无状态的传输协议,所以传递数据非常快,没有TCP的这些机制,被攻击利用的机制就少一些,但是也无法避免被攻击。
  • 缺点:
    • TCP缺点就是效率低占用系统资源高易被攻击,TCP在传递数据之前要先建立连接,这会消耗时间,而且在数据传递时,确认机制、重传机制、拥塞机制等都会消耗大量时间,而且要在每台设备上维护所有的传输连接。
    • UDP缺点就是不可靠不稳定,因为没有TCP的那些机制,UDP在传输数据时,如果网络质量不好,就会很容易丢包,造成数据的缺失。
  • 适用场景:
    • TCP:当对网络通讯质量有要求时,比如HTTP、HTTPS、FTP等传输文件的协议, POP、SMTP等邮件传输的协议。
    • UDP:对网络通讯质量要求不高时,要求网络通讯速度要快的场景。

至于WebSocket,后续可能会专门写一篇文章来介绍。综上所述,决定采用TCP协议。

为什么使用Protobuf?

对于App网络传输协议,我们比较常见的、可选的,有三种,分别是json/xml/protobuf,老规矩,我们先分别来看看这三种格式的优缺点:

  • 优点:
    • json优点就是较XML格式更加小巧,传输效率较xml提高了很多,可读性还不错。
    • xml优点就是可读性强,解析方便。
    • protobuf优点就是传输效率快(据说在数据量大的时候,传输效率比xml和json快10-20倍),序列化后体积相比Json和XML很小,支持跨平台多语言,消息格式升级和兼容性还不错,序列化反序列化速度很快。
  • 缺点:
    • json缺点就是传输效率也不是特别高(比xml快,但比protobuf要慢很多)。
    • xml缺点就是效率不高,资源消耗过大。
    • protobuf缺点就是使用不太方便。

在一个需要大量的数据传输的场景中,如果数据量很大,那么选择protobuf可以明显的减少数据量,减少网络IO,从而减少网络传输所消耗的时间。考虑到作为一个主打社交的产品,消息数据量会非常大,同时为了节约流量,所以采用protobuf是一个不错的选择。

为什么使用Netty?

首先,我们来了解一下,Netty到底是个什么东西。网络上找到的介绍:Netty是由JBOSS提供的基于Java NIO的开源框架,Netty提供异步非阻塞、事件驱动、高性能、高可靠、高可定制性的网络应用程序和工具,可用于开发服务端和客户端。

  • 为什么不用Java BIO?
    • 一连接一线程,由于线程数是有限的,所以这样非常消耗资源,最终也导致它不能承受高并发连接的需求。
    • 性能低,因为频繁的进行上下文切换,导致CUP利用率低。
    • 可靠性差,由于所有的IO操作都是同步的,即使是业务线程也如此,所以业务线程的IO操作也有可能被阻塞,这将导致系统过分依赖网络的实时情况和外部组件的处理能力,可靠性大大降低。
  • 为什么不用Java NIO?
    • NIO的类库和API相当复杂,使用它来开发,需要非常熟练地掌握Selector、ByteBuffer、ServerSocketChannel、SocketChannel等。
    • 需要很多额外的编程技能来辅助使用NIO,例如,因为NIO涉及了Reactor线程模型,所以必须必须对多线程和网络编程非常熟悉才能写出高质量的NIO程序。
    • 想要有高可靠性,工作量和难度都非常的大,因为服务端需要面临客户端频繁的接入和断开、网络闪断、半包读写、失败缓存、网络阻塞的问题,这些将严重影响我们的可靠性,而使用原生NIO解决它们的难度相当大。
    • JDK NIO中著名的BUG--epoll空轮询,当select返回0时,会导致Selector空轮询而导致CUP100%,官方表示JDK1.6之后修复了这个问题,其实只是发生的概率降低了,没有根本上解决。
  • 为什么用Netty?
    • API使用简单,更容易上手,开发门槛低
    • 功能强大,预置了多种编解码功能,支持多种主流协议
    • 定制能力高,可以通过ChannelHandler对通信框架进行灵活地拓展
    • 高性能,与目前多种NIO主流框架相比,Netty综合性能最高
    • 高稳定性,解决了JDK NIO的BUG
    • 经历了大规模的商业应用考验,质量和可靠性都有很好的验证。
  • 为什么不用第三方SDK,如:融云、环信、腾讯TIM? 这个就见仁见智了,有的时候,是因为公司的技术选型问题,因为用第三方的SDK,意味着消息数据需要存储到第三方的服务器上,再者,可扩展性、灵活性肯定没有自己开发的要好,还有一个小问题,就是收费。比如,融云免费版只支持100个注册用户,超过100就要收费,群聊支持人数有限制等等...

Mina其实跟Netty很像,大部分API都相同,因为是同一个作者开发的。但感觉Mina没有Netty成熟,在使用Netty的过程中,出了问题很轻易地可以找到解决方案,所以,Netty是一个不错的选择。

好了,废话不多说,直接开始吧。

准备工作

首先,我们新建一个Project,在Project里面再新建一个Android Library,Module名称暂且叫做im_lib,如图所示:

然后,分析一下我们的消息结构,每条消息应该会有一个消息唯一id,发送者id,接收者id,消息类型,发送时间等,经过分析,整理出一个通用的消息类型,如下:

  • msgId 消息id
  • fromId 发送者id
  • toId 接收者id
  • msgType 消息类型
  • msgContentType 消息内容类型
  • timestamp 消息时间戳
  • statusReport 状态报告
  • extend 扩展字段

根据上述所示,我整理了一个思维导图,方便大家参考:

这是基础部分,当然,大家也可以根据自己需要自定义比较适合自己的消息结构。

我们根据自定义的消息类型来编写proto文件。

然后执行命令(我用的mac,windows命令应该也差不多):

然后就会看到,在和proto文件同级目录下,会生成一个java类,这个就是我们需要用到的东东:

我们打开瞄一眼:

东西比较多,不用去管,这是google为我们生成的protobuf类,直接用就行,怎么用呢?直接用这个类文件,拷到我们开始指定的项目包路径下就可以啦:

加依赖后,可以看到,MessageProtobuf类文件已经没有报错了,顺便把netty的jar包也导进来一下,还有fastjson的:

建议用netty-all-x.x.xx.Final的jar包,后续熟悉了,可以用精简的jar包。

至此,准备工作已结束,下面,我们来编写java代码,实现即时通讯的功能。

封装

为什么需要封装呢?说白了,就是为了解耦,为了方便日后切换到不同框架实现,而无需到处修改调用的地方。

举个栗子,比如Android早期比较流行的图片加载框架是Universal ImageLoader,后期因为某些原因,原作者停止了维护该项目,目前比较流行的图片加载框架是Picasso或Glide,因为图片加载功能可能调用的地方非常多,如果不作一些封装,早期使用了Universal ImageLoader的话,现在需要切换到Glide,那改动量将非常非常大,而且还很有可能会有遗漏,风险度非常高。

那么,有什么解决方案呢?

很简单,我们可以用工厂设计模式进行一些封装,工厂模式有三种:简单工厂模式、抽象工厂模式、工厂方法模式。在这里,我采用工厂方法模式进行封装,具体区别,可以参见:设计模式相关资料。

我们分析一下,ims(IM Service,下文简称ims)应该是有初始化建立连接重连关闭连接释放资源判断长连接是否关闭发送消息等功能,基于上述分析,我们可以进行一个接口抽象:

public interface IMSClientInterface {

/**
* 初始化
*
* @param serverUrlList 服务器地址列表
* @param listener 与应用层交互的listener
* @param callback ims连接状态回调
*/
void init(Vector<String> serverUrlList, OnEventListener listener, IMSConnectStatusCallback callback);

/**
* 重置连接,也就是重连
* 首次连接也可认为是重连
*/
void resetConnect();

/**
* 重置连接,也就是重连
* 首次连接也可认为是重连
* 重载
*
* @param isFirst 是否首次连接
*/
void resetConnect(boolean isFirst);

/**
* 关闭连接,同时释放资源
*/
void close();

/**
* 标识ims是否已关闭
*
* @return
*/
boolean isClosed();

/**
* 发送消息
*
* @param msg
*/
void sendMsg(MessageProtobuf.Msg msg);

/**
* 发送消息
* 重载
*
* @param msg
* @param isJoinTimeoutManager 是否加入发送超时管理器
*/
void sendMsg(MessageProtobuf.Msg msg, boolean isJoinTimeoutManager);

/**
* 获取重连间隔时长
*
* @return
*/
int getReconnectInterval();

/**
* 获取连接超时时长
*
* @return
*/
int getConnectTimeout();

/**
* 获取应用在前台时心跳间隔时间
*
* @return
*/
int getForegroundHeartbeatInterval();

/**
* 获取应用在后台时心跳间隔时间
*
* @return
*/
int getBackgroundHeartbeatInterval();

/**
* 设置app前后台状态
*
* @param appStatus
*/
void setAppStatus(int appStatus);

/**
* 获取由应用层构造的握手消息
*
* @return
*/
MessageProtobuf.Msg getHandshakeMsg();

/**
* 获取由应用层构造的心跳消息
*
* @return
*/
MessageProtobuf.Msg getHeartbeatMsg();

/**
* 获取应用层消息发送状态报告消息类型
*
* @return
*/
int getServerSentReportMsgType();

/**
* 获取应用层消息接收状态报告消息类型
*
* @return
*/
int getClientReceivedReportMsgType();

/**
* 获取应用层消息发送超时重发次数
*
* @return
*/
int getResendCount();

/**
* 获取应用层消息发送超时重发间隔
*
* @return
*/
int getResendInterval();

/**
* 获取消息转发器
*
* @return
*/
MsgDispatcher getMsgDispatcher();

/**
* 获取消息发送超时定时器
*
* @return
*/
MsgTimeoutTimerManager getMsgTimeoutTimerManager();
}

OnEventListener是与应用层交互的listener:

IMConnectStatusCallback是ims连接状态回调监听器:

然后写一个Netty tcp实现类:

接下来,写一个工厂方法:

封装部分到此结束,接下来,就是实现了。

初始化:我们先实现init(Vector serverUrlList, OnEventListener listener, IMSConnectStatusCallback callback)方法,初始化一些参数,以及进行第一次连接等:

其中,MsgDispatcher是消息转发器,负责将接收到的消息转发到应用层:

ExecutorServiceFactory是线程池工厂,负责调度重连及心跳线程:


连接及重连

resetConnect()方法作为连接的起点,首次连接以及重连逻辑,都是在resetConnect()方法进行逻辑处理,我们来瞄一眼:

可以看到,非首次进行连接,也就是连接一个周期失败后,进行重连时,会先让线程休眠一段时间,因为这个时候也许网络状况不太好,接着,判断ims是否已关闭或者是否正在进行重连操作,由于重连操作是在子线程执行,为了避免重复重连,需要进行一些并发处理。开始重连任务后,分四个步骤执行:

  • 改变重连状态标识
  • 回调连接状态到应用层
  • 关闭之前打开的连接channel
  • 利用线程池执行一个新的重连任务

ResetConnectRunnable是重连任务,核心的重连逻辑都放到这里执行:

toServer()是真正连接服务器的地方:

initBootstrap()是初始化Netty Bootstrap:

注:NioEventLoopGroup线程数设置为4,可以满足QPS是一百多万的情况了,至于应用如果需要承受上千万上亿流量的,需要另外调整线程数。参考自:netty实战之百万级流量NioEventLoopGroup线程数配置

接着,我们来看看TCPChannelInitializerHanlder

其中,ProtobufEncoderProtobufDecoder是添加对protobuf的支持,LoginAuthRespHandler是接收到服务端握手认证消息响应的处理handler,HeartbeatRespHandler是接收到服务端心跳消息响应的处理handler,TCPReadHandler是接收到服务端其它消息后的处理handler,先不去管,我们重点来分析下LengthFieldPrependerLengthFieldBasedFrameDecoder,这就需要引申到TCP的拆包与粘包啦。


TCP的拆包与粘包

  • 什么是TCP拆包?为什么会出现TCP拆包? 简单地说,我们都知道TCP是以“流”的形式进行数据传输的,而且TCP为提高性能,发送端会将需要发送的数据刷入缓冲区,等待缓冲区满了之后,再将缓冲区中的数据发送给接收方,同理,接收方也会有缓冲区这样的机制,来接收数据。 拆包就是在socket读取时,没有完整地读取一个数据包,只读取一部分。
  • 什么是TCP粘包?为什么会出现TCP粘包? 同上。 粘包就是在socket读取时,读到了实际意义上的两个或多个数据包的内容,同时将其作为一个数据包进行处理。

引用网上一张图片来解释一下在TCP出现拆包、粘包以及正常状态下的三种情况,如侵请联系我删除:

了解了TCP出现拆包/粘包的原因,那么,如何解决呢?通常来说,有以下四种解决方式:

  • 消息定长
  • 用回车换行符作为消息结束标志
  • 用特殊分隔符作为消息结束标志,如\t、\n等,回车换行符其实就是特殊分隔符的一种。
  • 将消息分为消息头和消息体,在消息头中用字段标识消息总长度。

netty针对以上四种场景,给我们封装了以下四种对应的解码器:

  • FixedLengthFrameDecoder,定长消息解码器
  • LineBasedFrameDecoder,回车换行符消息解码器
  • DelimiterBasedFrameDecoder,特殊分隔符消息解码器
  • LengthFieldBasedFrameDecoder,自定义长度消息解码器。

我们用到的就是LengthFieldBasedFrameDecoder自定义长度消息解码器,同时配合LengthFieldPrepender编码器使用,关于参数配置,建议参考netty--最通用TCP黏包解决方案:LengthFieldBasedFrameDecoder和LengthFieldPrepender这篇文章,讲解得比较细致。我们配置的是消息头长度为2个字节,所以消息包的最大长度需要小于65536个字节,netty会把消息内容长度存放消息头的字段里,接收方可以根据消息头的字段拿到此条消息总长度,当然,netty提供的LengthFieldBasedFrameDecoder已经封装好了处理逻辑,我们只需要配置lengthFieldOffset、lengthFieldLength、lengthAdjustment、initialBytesToStrip即可,这样就可以解决TCP的拆包与粘包,这也就是netty相较于原生nio的便捷性,原生nio需要自己处理拆包/粘包等问题。


长连接握手认证

接着,我们来看看LoginAuthHandlerHeartbeatRespHandler

  • LoginAuthRespHandler是当客户端与服务端长连接建立成功后,客户端主动向服务端发送一条登录认证消息,带入与当前用户相关的参数,比如token,服务端收到此消息后,到数据库查询该用户信息,如果是合法有效的用户,则返回一条登录成功消息给该客户端,反之,返回一条登录失败消息给该客户端,这里,就是在接收到服务端返回的登录状态后的处理handler,比如:

可以看到,当接收到服务端握手消息响应后,会从扩展字段取出status,如果status=1,则代表握手成功,这个时候就先主动向服务端发送一条心跳消息,然后利用Netty的IdleStateHandler读写超时机制,定期向服务端发送心跳消息,维持长连接,以及检测长连接是否还存在等。

  • HeartbeatRespHandler是当客户端接收到服务端登录成功的消息后,主动向服务端发送一条心跳消息,心跳消息可以是一个空包,消息包体越小越好,服务端收到客户端的心跳包后,原样返回给客户端,这里,就是收到服务端返回的心跳消息响应的处理handler,比如:

这个就比较简单,收到心跳消息响应,无需任务处理,直接打印一下方便我们分析即可。


心跳机制及读写超时机制

心跳包是定期发送,也可以自己定义一个周期,比如Android微信智能心跳方案,为了简单,此处规定应用在前台时,8秒发送一个心跳包,切换到后台时,30秒发送一次,根据自己的实际情况修改一下即可。心跳包用于维持长连接以及检测长连接是否断开等。

接着,我们利用Netty的读写超时机制,来实现一个心跳消息管理handler:

可以看到,利用userEventTriggered()方法回调,通过IdleState类型,可以判断读超时/写超时/读写超时,这个在添加IdleStateHandler时可以配置,下面会贴上代码。首先我们可以在READER_IDLE事件里,检测是否在规定时间内没有收到服务端心跳包响应,如果是,那就触发重连操作。在WRITER_IDEL事件可以检测客户端是否在规定时间内没有向服务端发送心跳包,如果是,那就主动发送一个心跳包。发送心跳包是在子线程中执行,我们可以利用之前写的work线程池进行线程管理。 addHeartbeatHandler()代码如下:

从图上可看到,在IdleStateHandler里,配置的读超时为心跳间隔时长的3倍,也就是3次心跳没有响应时,则认为长连接已断开,触发重连操作。写超时则为心跳间隔时长,意味着每隔heartbeatInterval会发送一个心跳包。读写超时没用到,所以配置为0。

onConnectStatusCallback(int connectStatus)为连接状态回调,以及一些公共逻辑处理:

连接成功后,立即发送一条握手消息,再次梳理一下整体流程:

  • 客户端根据服务端返回的host及port,进行第一次连接。
  • 连接成功后,客户端向服务端发送一条握手认证消息(1001)
  • 服务端在收到客户端的握手认证消息后,从扩展字段里取出用户token,到本地数据库校验合法性。
  • 校验完成后,服务端把校验结果通过1001消息返回给客户端,也就是握手消息响应。
  • 客户端收到服务端的握手消息响应后,从扩展字段取出校验结果。若校验成功,客户端向服务端发送一条心跳消息(1002),然后进入心跳发送周期,定期间隔向服务端发送心跳消息,维持长连接以及实时检测链路可用性,若发现链路不可用,等待一段时间触发重连操作,重连成功后,重新开始握手/心跳的逻辑。

看看TCPReadHandler收到消息是怎么处理的:

可以看到,在channelInactive()及exceptionCaught()方法都触发了重连,channelInactive()方法在当链路断开时会调用,exceptionCaught()方法在当出现异常时会触发,另外,还有诸如channelUnregistered()、channelReadComplete()等方法可以重写,在这里就不贴了,相信聪明的你一眼就能看出方法的作用。 我们仔细看一下channelRead()方法的逻辑,在if判断里,先判断消息类型,如果是服务端返回的消息发送状态报告类型,则判断消息是否发送成功,如果发送成功,从超时管理器中移除,这个超时管理器是干嘛的呢?下面讲到消息重发机制的时候会详细地讲。在else里,收到其他消息后,会立马给服务端返回一个消息接收状态报告,告诉服务端,这条消息我已经收到了,这个动作,对于后续需要做的离线消息会有作用。如果不需要支持离线消息功能,这一步可以省略。最后,调用消息转发器,把接收到的消息转发到应用层即可。

代码写了这么多,我们先来看看运行后的效果,先贴上缺失的消息发送代码及ims关闭代码以及一些默认配置项的代码。 发送消息:

关闭ims:

ims默认配置:

还有,应用层实现的ims client启动器:

由于代码有点多,不太方便全部贴上,如果有兴趣可以下载demo体验。

本文分享自微信公众号 - C语言入门到精通(yclzl960229)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-07-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券