Python爬虫新手教程:微医挂号网医生数据抓取

1. 写在前面

今天要抓取的一个网站叫做微医网站,地址为 https://www.guahao.com ,我们将通过python3爬虫抓取这个网址,然后数据存储到CSV里面,为后面的一些分析类的教程做准备。本篇文章主要使用的库为pyppeteerpyquery

首先找到 医生列表页

https://www.guahao.com/expert/all/全国/all/不限/p5  

这个页面显示有 75952 条数据 ,实际测试中,翻页到第38页,数据就加载不出来了,目测后台程序猿没有把数据返回,不过为了学习,我们忍了。

大家在学python的时候肯定会遇到很多难题,以及对于新技术的追求,这里推荐一下我们的Python学习扣qun:784758214,这里是python学习者聚集地!!同时,自己是一名高级python开发工程师,从基础的python脚本到web开发、爬虫、django、数据挖掘等,零基础到项目实战的资料都有整理。送给每一位python的小伙伴!每日分享一些学习的方法和需要注意的小细节

2. 页面URL

https://www.guahao.com/expert/all/全国/all/不限/p1
https://www.guahao.com/expert/all/全国/all/不限/p2
...
https://www.guahao.com/expert/all/全国/all/不限/p38 

数据总过38页,量不是很大,咱只需要随便选择一个库抓取就行,这篇博客,我找了一个冷门的库 pyppeteer 在使用过程中,发现资料好少,很尴尬。而且官方的文档写的也不好,有兴趣的可以自行去看看。关于这个库的安装也在下面的网址中。

https://miyakogi.github.io/pyppeteer/index.html

最简单的使用方法,在官方文档中也简单的写了一下,如下,可以把一个网页直接保存为一张图片。

import asyncio
from pyppeteer import launch

async def main():
    browser = await launch()  # 运行一个无头的浏览器
    page = await browser.newPage()  # 打开一个选项卡
    await page.goto('http://www.baidu.com')  # 加载一个页面
    await page.screenshot({'path': 'baidu.png'})  # 把网页生成截图
    await browser.close()

asyncio.get_event_loop().run_until_complete(main())  # 异步

我整理了下面的一些参考代码,你可以 做一些参考。

browser = await launch(headless=False)  # 可以打开浏览器
await page.click('#login_user')  # 点击一个按钮
await page.type('#login_user', 'admin')  # 输入内容

await page.click('#password')  
await page.type('#password', '123456')

await page.click('#login-submit')

await page.waitForNavigation()  

# 设置浏览器窗口大小
await page.setViewport({
    'width': 1350,
    'height': 850
})

content = await page.content()  # 获取网页内容
cookies = await page.cookies()  # 获取网页cookies

3. 爬取页面

运行下面的代码,你就可以看到控制台不断的打印网页的源码,只要获取到源码,就可以进行后面的解析与保存数据了。如果出现控制不输出任何东西的情况,那么请把下面的 await launch(headless=True) 修改为 await launch(headless=False)

import asyncio
from pyppeteer import launch

class DoctorSpider(object):
    async def main(self, num):
        try:
            browser = await launch(headless=True)
            page = await browser.newPage()

            print(f"正在爬取第 {num} 页面")
            await page.goto("https://www.guahao.com/expert/all/全国/all/不限/p{}".format(num))

            content = await page.content()
            print(content)

        except Exception as e:
            print(e.args)

        finally:
            num += 1
            await browser.close()
            await self.main(num)

    def run(self):
        loop = asyncio.get_event_loop()
        asyncio.get_event_loop().run_until_complete(self.main(1))

if __name__ == '__main__':
    doctor = DoctorSpider()
    doctor.run()

4. 解析数据

解析数据采用的是pyquery ,这个库在之前的博客中有过使用,直接应用到案例中即可。最终产生的数据通过pandas保存到CSV文件中。

import asyncio

from pyppeteer import launch
from pyquery import PyQuery as pq
import pandas as pd  # 保存csv文件

class DoctorSpider(object):

    def __init__(self):
        self._data = list()

    async def main(self,num):

        try:

            browser = await launch(headless=True)
            page = await browser.newPage()

            print(f"正在爬取第 {num} 页面")
            await page.goto("https://www.guahao.com/expert/all/全国/all/不限/p{}".format(num))
            content = await page.content()

            self.parse_html(content)
            print("正在存储数据....")

            data = pd.DataFrame(self._data)
            data.to_csv("微医数据.csv", encoding='utf_8_sig')
        except Exception as e:
            print(e.args)
        finally:
            num+=1

            await browser.close()

            await self.main(num)
    def parse_html(self,content):

        doc = pq(content)

        items = doc(".g-doctor-item").items()
        for item in items:
            #doctor_name = item.find(".seo-anchor-text").text()
            name_level = item.find(".g-doc-baseinfo>dl>dt").text() # 姓名和级别
            department = item.find(".g-doc-baseinfo>dl>dd>p:eq(0)").text() # 科室
            address = item.find(".g-doc-baseinfo>dl>dd>p:eq(1)").text()  # 医院地址
            star = item.find(".star-count em").text()  # 评分
            inquisition = item.find(".star-count i").text() # 问诊量
            expert_team = item.find(".expert-team").text()  # 专家团队
            service_price_img = item.find(".service-name:eq(0)>.fee").text()
            service_price_video = item.find(".service-name:eq(1)>.fee").text()

            one_data = {
                "name": name_level.split(" ")[0],
                "level": name_level.split(" ")[1],
                "department": department,
                "address": address,
                "star": star,
                "inquisition": inquisition,
                "expert_team": expert_team,
                "service_price_img": service_price_img,
                "service_price_video": service_price_video
            }

            self._data.append(one_data)

    def run(self):
        loop = asyncio.get_event_loop()

        asyncio.get_event_loop().run_until_complete(self.main(1))

if __name__ == '__main__':

    doctor = DoctorSpider()
    doctor.run()

总结一下,这个库不怎么好用,可能之前没有细细的研究过,感觉一般,你可以在多尝试一下,看一下是否可以把整体的效率提高上去。

数据清单:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券