前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >贪心算法之区间调度问题

贪心算法之区间调度问题

作者头像
帅地
发布2019-08-26 15:54:25
1.1K0
发布2019-08-26 15:54:25
举报
文章被收录于专栏:苦逼的码农

什么是贪心算法呢?贪心算法可以认为是动态规划算法的一个特例,相比动态规划,使用贪心算法需要满足更多的条件(贪心选择性质),但是效率比动态规划要高。

比如说一个算法问题使用暴力解法需要指数级时间,如果能使用动态规划消除重叠子问题,就可以降到多项式级别的时间,如果满足贪心选择性质,那么可以进一步降低时间复杂度,达到线性级别的。

什么是贪心选择性质呢,简单说就是:每一步都做出一个局部最优的选择,最终的结果就是全局最优。注意哦,这是一种特殊性质,其实只有一小部分问题拥有这个性质。

比如你面前放着 100 张人民币,你只能拿十张,怎么才能拿最多的面额?显然每次选择剩下钞票中面值最大的一张,最后你的选择一定是最优的。

然而,大部分问题都明显不具有贪心选择性质。比如打斗地主,对手出对儿三,按照贪心策略,你应该出尽可能小的牌刚好压制住对方,但现实情况我们甚至可能会出王炸。这种情况就不能用贪心算法,而得使用动态规划解决,参见前文 动态规划解决博弈问题

一、问题概述

言归正传,本文解决一个很经典的贪心算法问题 Interval Scheduling(区间调度问题)。给你很多形如[start,end]的闭区间,请你设计一个算法,算出这些区间中最多有几个互不相交的区间

代码语言:javascript
复制
int intervalScheduling(int[][] ints) {}

举个例子,intvs=[[1,3],[2,4],[3,6]],这些区间最多有两个区间互不相交,即[[1,3],[3,6]],你的算法应该返回 2。注意边界相同并不算相交。

这个问题在生活中的应用广泛,比如你今天有好几个活动,每个活动都可以用区间[start,end]表示开始和结束的时间,请问你今天最多能参加几个活动呢?

二、贪心解法

这个问题有许多看起来不错的解决思路,实际上都不能得到正确答案。比如说:

也许我们可以每次选择可选区间中开始最早的那个?但是可能存在某些区间开始很早,但是很长,使得我们错误地错过了一些短的区间。

或者我们每次选择可选区间中最短的那个?或者选择出现冲突最少的那个区间?这些方案都能很容易举出反例,不是正确的方案。

正确的思路其实很简单,可以分为以下三步:

  1. 从区间集合 intvs 中选择一个区间 x,这个 x 是在当前所有区间中结束最早的(end 最小)。
  2. 把所有与 x 区间相交的区间从区间集合 intvs 中删除。
  3. 重复步骤 1 和 2,直到 intvs 为空为止。之前选出的那些 x 就是最大不相交子集。

把这个思路实现成算法的话,可以按每个区间的end数值升序排序,因为这样处理之后实现步骤 1 和步骤 2 都方便很多:

现在来实现算法,对于步骤 1,由于我们预先按照end排了序,所以选择 x 是很容易的。关键在于,如何去除与 x 相交的区间,选择下一轮循环的 x 呢?

由于我们事先排了序,不难发现所有与 x 相交的区间必然会与 x 的end相交;如果一个区间不想与 x 的end相交,它的start必须要大于(或等于)x 的end

下面看下代码:

三、应用举例

下面举例几道 LeetCode 题目应用一下区间调度算法。

第 435 题,无重叠区间:

我们已经会求最多有几个区间不会重叠了,那么剩下的不就是至少需要去除的区间吗?

代码语言:javascript
复制
int eraseOverlapIntervals(int[][] intervals) {
    int n = intervals.length;
    return n - intervalSchedule(intervals);
}

第 452 题,用最少的箭头射爆气球:

其实稍微思考一下,这个问题和区间调度算法一模一样!如果最多有n个不重叠的区间,那么就至少需要n个箭头穿透所有区间:

只是有一点不一样,在intervalSchedule算法中,如果两个区间的边界触碰,不算重叠;而按照这道题目的描述,箭头如果碰到气球的边界气球也会爆炸,所以说相当于区间的边界触碰也算重叠:

所以只要将之前的算法稍作修改,就是这道题目的答案:

代码语言:javascript
复制
int findMinArrowShots(int[][] intvs) {
    // ...

    for (int[] interval : intvs) {
        int start = interval[0];
        // 把 >= 改成 > 就行了
        if (start > x_end) {
            count++;
            x_end = interval[1];
        }
    }
    return count;
}

这么做的原因也不难理解,因为现在边界接触也算重叠,所以start == x_end时不能更新区间 x。

本文终。对于区间问题的处理,一般来说第一步都是排序,相当于预处理降低后续操作难度。但是对于不同的问题,排序的方式可能不同,这个需要归纳总结,以后再写写这方面的文章。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-08-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 帅地玩编程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、问题概述
  • 二、贪心解法
  • 三、应用举例
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档