前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >实战 | 深入理解 Hive ACID 事务表

实战 | 深入理解 Hive ACID 事务表

作者头像
大数据真好玩
发布2019-09-24 13:02:01
3K0
发布2019-09-24 13:02:01
举报

来源:https://blog.csdn.net/zjerryj/article/details/91470261

作者:薄荷脑

By 暴走大数据

场景描述:Apache Hive 0.13 版本引入了事务特性,能够在 Hive 表上实现 ACID 语义,包括 INSERT/UPDATE/DELETE/MERGE 语句、增量数据抽取等。Hive 3.0 又对该特性进行了优化,包括改进了底层的文件组织方式,减少了对表结构的限制,以及支持条件下推和向量化查询。Hive 事务表的介绍和使用方法可以参考 Hive Wiki 和 各类教程,本文将重点讲述 Hive 事务表是如何在 HDFS 上存储的,及其读写过程是怎样的。

关键词:Hive ACID

文件结构

插入数据

CREATE TABLE employee (id int, name string, salary int)
STORED AS ORC TBLPROPERTIES ('transactional' = 'true');

INSERT INTO employee VALUES
(1, 'Jerry', 5000),
(2, 'Tom',   8000),
(3, 'Kate',  6000);

INSERT 语句会在一个事务中运行。它会创建名为 delta 的目录,存放事务的信息和表的数据。

/user/hive/warehouse/employee/delta_0000001_0000001_0000
/user/hive/warehouse/employee/delta_0000001_0000001_0000/_orc_acid_version
/user/hive/warehouse/employee/delta_0000001_0000001_0000/bucket_00000

目录名称的格式为 delta_minWID_maxWID_stmtID,即 delta 前缀、写事务的 ID 范围、以及语句 ID。具体来说:

所有 INSERT 语句都会创建 delta 目录。UPDATE 语句也会创建 delta 目录,但会先创建一个 delete 目录,即先删除、后插入。delete 目录的前缀是 delete_delta;

Hive 会为所有的事务生成一个全局唯一的 ID,包括读操作和写操作。针对写事务(INSERT、DELETE 等),Hive 还会创建一个写事务 ID(Write ID),该 ID 在表范围内唯一。写事务 ID 会编码到 delta 和 delete 目录的名称中;

语句 ID(Statement ID)则是当一个事务中有多条写入语句时使用的,用作唯一标识。

再看文件内容,_orc_acid_version 的内容是 2,即当前 ACID 版本号是 2。它和版本 1 的主要区别是 UPDATE 语句采用了 split-update 特性,即上文提到的先删除、后插入。这个特性能够使 ACID 表支持条件下推等功能,具体可以查看 HIVE-14035。bucket_00000 文件则是写入的数据内容。由于这张表没有分区和分桶,所以只有这一个文件。事务表都以 ORC 格式存储的,我们可以使用 orc-tools 来查看文件的内容:

$ orc-tools data bucket_00000
{"operation":0,"originalTransaction":1,"bucket":536870912,"rowId":0,"currentTransaction":1,"row":{"id":1,"name":"Jerry","salary":5000}}
{"operation":0,"originalTransaction":1,"bucket":536870912,"rowId":1,"currentTransaction":1,"row":{"id":2,"name":"Tom","salary":8000}}
{"operation":0,"originalTransaction":1,"bucket":536870912,"rowId":2,"currentTransaction":1,"row":{"id":3,"name":"Kate","salary":6000}}

输出内容被格式化为了一行行的 JSON 字符串,我们可以看到具体数据是在 row 这个键中的,其它键则是 Hive 用来实现事务特性所使用的,具体含义为:

  • operation 0 表示插入,1 表示更新,2 表示删除。由于使用了 split-update,UPDATE 是不会出现的;
  • originalTransaction 是该条记录的原始写事务 ID。对于 INSERT 操作,该值和 currentTransaction 是一致的。对于 DELETE,则是该条记录第一次插入时的写事务 ID;
  • bucket 是一个 32 位整型,由 BucketCodec 编码,各个二进制位的含义为:
    • 1-3 位:编码版本,当前是 001;
    • 4 位:保留;
    • 5-16 位:分桶 ID,由 0 开始。分桶 ID 是由 CLUSTERED BY 子句所指定的字段、以及分桶的数量决定的。该值和 bucket_N 中的 N 一致;
    • 17-20 位:保留;
    • 21-32 位:语句 ID;
    • 举例来说,整型 536936448 的二进制格式为 00100000000000010000000000000000,即它是按版本 1 的格式编码的,分桶 ID 为 1;
  • rowId 是一个自增的唯一 ID,在写事务和分桶的组合中唯一;
  • currentTransaction 当前的写事务 ID;
  • row 具体数据。对于 DELETE 语句,则为 null

我们可以注意到,文件中的数据会按 (originalTransaction, bucket, rowId) 进行排序,这点对后面的读取操作非常关键。

这些信息还可以通过 row__id 这个虚拟列进行查看:

SELECT row__id, id, name, salary FROM employee;

输出结果为:

{"writeid":1,"bucketid":536870912,"rowid":0}    1       Jerry   5000
{"writeid":1,"bucketid":536870912,"rowid":1}    2       Tom     8000
{"writeid":1,"bucketid":536870912,"rowid":2}    3       Kate    6000
增量数据抽取 API V2

Hive 3.0 还改进了先前的 增量抽取 API,通过这个 API,用户或第三方工具(Flume 等)就可以利用 ACID 特性持续不断地向 Hive 表写入数据了。这一操作同样会生成 delta 目录,但更新和删除操作不再支持。

StreamingConnection connection = HiveStreamingConnection.newBuilder().connect();
connection.beginTransaction();
connection.write("11,val11,Asia,China".getBytes());
connection.write("12,val12,Asia,India".getBytes());
connection.commitTransaction();
connection.close();

更新数据

UPDATE employee SET salary = 7000 WHERE id = 2;

这条语句会先查询出所有符合条件的记录,获取它们的 row__id 信息,然后分别创建 deletedelta 目录:

/user/hive/warehouse/employee/delta_0000001_0000001_0000/bucket_00000
/user/hive/warehouse/employee/delete_delta_0000002_0000002_0000/bucket_00000
/user/hive/warehouse/employee/delta_0000002_0000002_0000/bucket_00000

delete_delta_0000002_0000002_0000/bucket_00000 包含了删除的记录:

{"operation":2,"originalTransaction":1,"bucket":536870912,"rowId":1,"currentTransaction":2,"row":null}

delta_0000002_0000002_0000/bucket_00000 包含更新后的数据:

{"operation":0,"originalTransaction":2,"bucket":536870912,"rowId":0,"currentTransaction":2,"row":{"id":2,"name":"Tom","salary":7000}}

DELETE 语句的工作方式类似,同样是先查询,后生成 delete 目录。

合并表

MERGE 语句和 MySQL 的 INSERT ON UPDATE 功能类似,它可以将来源表的数据合并到目标表中:

CREATE TABLE employee_update (id int, name string, salary int);
INSERT INTO employee_update VALUES
(2, 'Tom',  7000),
(4, 'Mary', 9000);

MERGE INTO employee AS a
USING employee_update AS b ON a.id = b.id
WHEN MATCHED THEN UPDATE SET salary = b.salary
WHEN NOT MATCHED THEN INSERT VALUES (b.id, b.name, b.salary);

这条语句会更新 Tom 的薪资字段,并插入一条 Mary 的新记录。多条 WHEN 子句会被视为不同的语句,有各自的语句 ID(Statement ID)。INSERT 子句会创建 delta_0000002_0000002_0000 文件,内容是 Mary 的数据;UPDATE 语句则会创建 delete_delta_0000002_0000002_0001 和 delta_0000002_0000002_0001 两个文件,删除并新增 Tom 的数据。

/user/hive/warehouse/employee/delta_0000001_0000001_0000
/user/hive/warehouse/employee/delta_0000002_0000002_0000
/user/hive/warehouse/employee/delete_delta_0000002_0000002_0001
/user/hive/warehouse/employee/delta_0000002_0000002_0001

压缩

随着写操作的积累,表中的 delta 和 delete 文件会越来越多。事务表的读取过程中需要合并所有文件,数量一多势必会影响效率。此外,小文件对 HDFS 这样的文件系统也是不够友好的。因此,Hive 引入了压缩(Compaction)的概念,分为 Minor 和 Major 两类。

Minor Compaction 会将所有的 delta 文件压缩为一个文件,delete 也压缩为一个。压缩后的结果文件名中会包含写事务 ID 范围,同时省略掉语句 ID。压缩过程是在 Hive Metastore 中运行的,会根据一定阈值自动触发。我们也可以使用如下语句人工触发:

ALTER TABLE employee COMPACT 'minor';

以上文中的 MERGE 语句的结果举例,在运行了一次 Minor Compaction 后,文件目录结构将变为:

/user/hive/warehouse/employee/delete_delta_0000001_0000002
/user/hive/warehouse/employee/delta_0000001_0000002

在 delta_0000001_0000002/bucket_00000 文件中,数据会被排序和合并起来,因此文件中将包含两行 Tom 的数据。Minor Compaction 不会删除任何数据。

Major Compaction 则会将所有文件合并为一个文件,以 base_N 的形式命名,其中 N 表示最新的写事务 ID。已删除的数据将在这个过程中被剔除。row__id 则按原样保留。

/user/hive/warehouse/employee/base_0000002

需要注意的是,在 Minor 或 Major Compaction 执行之后,原来的文件不会被立刻删除。这是因为删除的动作是在另一个名为 Cleaner 的线程中执行的。因此,表中可能同时存在不同事务 ID 的文件组合,这在读取过程中需要做特殊处理。

读取过程

我们可以看到 ACID 事务表中会包含三类文件,分别是 base、delta、以及 delete。文件中的每一行数据都会以 row__id 作为标识并排序。从 ACID 事务表中读取数据就是对这些文件进行合并,从而得到最新事务的结果。这一过程是在 OrcInputFormat 和 OrcRawRecordMerger 类中实现的,本质上是一个合并排序的算法。

以下列文件为例,产生这些文件的操作为:插入三条记录,进行一次 Major Compaction,然后更新两条记录。1-0-0-1 是对 originalTransaction - bucketId - rowId - currentTransaction 的缩写。

+----------+    +----------+    +----------+
| base_1   |    | delete_2 |    | delta_2  |
+----------+    +----------+    +----------+
| 1-0-0-1  |    | 1-0-1-2  |    | 2-0-0-2  |
| 1-0-1-1  |    | 1-0-2-2  |    | 2-0-1-2  |
| 1-0-2-1  |    +----------+    +----------+
+----------+

合并过程为:

  • 对所有数据行按照 (originalTransaction, bucketId, rowId) 正序排列,(currentTransaction) 倒序排列,即:
    • 1-0-0-1
    • 1-0-1-2
    • 1-0-1-1
    • 2-0-1-2
  • 获取第一条记录;
  • 如果当前记录的 row__id 和上条数据一样,则跳过;
  • 如果当前记录的操作类型为 DELETE,也跳过;
    • 通过以上两条规则,对于 1-0-1-2 和 1-0-1-1,这条记录会被跳过;
  • 如果没有跳过,记录将被输出给下游;
  • 重复以上过程。

合并过程是流式的,即 Hive 会将所有文件打开,预读第一条记录,并将 row__id 信息存入到 ReaderKey 类型中。该类型实现了 Comparable 接口,因此可以按照上述规则自定义排序:

public class RecordIdentifier implements WritableComparable<RecordIdentifier> {
  private long writeId;
  private int bucketId;
  private long rowId;
  protected int compareToInternal(RecordIdentifier other) {
    if (other == null) { return -1; }
    if (writeId != other.writeId) { return writeId < other.writeId ? -1 : 1; }
    if (bucketId != other.bucketId) { return bucketId < other.bucketId ? - 1 : 1; }
    if (rowId != other.rowId) { return rowId < other.rowId ? -1 : 1; }
    return 0;
  }
}

public class ReaderKey extends RecordIdentifier {
  private long currentWriteId;
  private boolean isDeleteEvent = false;
  public int compareTo(RecordIdentifier other) {
    int sup = compareToInternal(other);
    if (sup == 0) {
      if (other.getClass() == ReaderKey.class) {
        ReaderKey oth = (ReaderKey) other;
        if (currentWriteId != oth.currentWriteId) { return currentWriteId < oth.currentWriteId ? +1 : -1; }
        if (isDeleteEvent != oth.isDeleteEvent) { return isDeleteEvent ? -1 : +1; }
      } else {
        return -1;
      }
    }
    return sup;
  }
}

然后,ReaderKey 会和文件句柄一起存入到 TreeMap 结构中。根据该结构的特性,我们每次获取第一个元素时就能得到排序后的结果,并读取数据了。

public class OrcRawRecordMerger {
  private TreeMap<ReaderKey, ReaderPair> readers = new TreeMap<>();
  public boolean next(RecordIdentifier recordIdentifier, OrcStruct prev) {
    Map.Entry<ReaderKey, ReaderPair> entry = readers.pollFirstEntry();
  }
}

选择文件

上文中提到,事务表目录中会同时存在多个事务的快照文件,因此 Hive 首先要选择出反映了最新事务结果的文件集合,然后再进行合并。举例来说,下列文件是一系列操作后的结果:两次插入,一次 Minor Compaction,一次 Major Compaction,一次删除。

delta_0000001_0000001_0000
delta_0000002_0000002_0000
delta_0000001_0000002
base_0000002
delete_delta_0000003_0000003_0000

过滤过程为:

  • 从 Hive Metastore 中获取所有成功提交的写事务 ID 列表;
  • 从文件名中解析出文件类型、写事务 ID 范围、以及语句 ID;
  • 选取写事务 ID 最大且合法的那个 base 目录,如果存在的话;
  • 对 delta 和 delete 文件进行排序:
    • minWID 较小的优先;
    • 如果 minWID 相等,则 maxWID 较大的优先;
    • 如果都相等,则按 stmtID 排序;没有 stmtID 的会排在前面;
  • 将 base 文件中的写事务 ID 作为当前 ID,循环过滤所有 delta 文件:
    • 如果 maxWID 大于当前 ID,则保留这个文件,并以此更新当前 ID;
    • 如果 ID 范围相同,也会保留这个文件;
    • 重复上述步骤。

过滤过程中还会处理一些特别的情况,如没有 base 文件,有多条语句,包含原始文件(即不含 row__id 信息的文件,一般是通过 LOAD DATA 导入的),以及 ACID 版本 1 格式的文件等。具体可以参考 AcidUtils#getAcidState 方法。

并行执行

在 Map-Reduce 模式下运行 Hive 时,多个 Mapper 是并行执行的,这就需要将 delta 文件按一定的规则组织好。简单来说,base 和 delta 文件会被分配到不同的分片(Split)中,但所有分片都需要能够读取所有的 delete 文件,从而根据它们忽略掉已删除的记录。

向量化查询

当 向量化查询 特性开启时,Hive 会尝试将所有的 delete 文件读入内存,并维护一个特定的数据结构,能够快速地对数据进行过滤。如果内存放不下,则会像上文提到的过程一样,逐步读取 delete 文件,使用合并排序的算法进行过滤。

public class VectorizedOrcAcidRowBatchReader {
  private final DeleteEventRegistry deleteEventRegistry;

  protected static interface DeleteEventRegistry {
    public void findDeletedRecords(ColumnVector[] cols, int size, BitSet selectedBitSet);
  }
  static class ColumnizedDeleteEventRegistry implements DeleteEventRegistry {}
  static class SortMergedDeleteEventRegistry implements DeleteEventRegistry {}

  public boolean next(NullWritable key, VectorizedRowBatch value) {
    BitSet selectedBitSet = new BitSet(vectorizedRowBatchBase.size);
    this.deleteEventRegistry.findDeletedRecords(innerRecordIdColumnVector,
        vectorizedRowBatchBase.size, selectedBitSet);
    for (int setBitIndex = selectedBitSet.nextSetBit(0), selectedItr = 0;
        setBitIndex >= 0;
        setBitIndex = selectedBitSet.nextSetBit(setBitIndex+1), ++selectedItr) {
      value.selected[selectedItr] = setBitIndex;
    }
  }
}

事务管理

为了实现 ACID 事务机制,Hive 还引入了新的事务管理器 DbTxnManager,它能够在查询计划中分辨出 ACID 事务表,联系 Hive Metastore 打开新的事务,完成后提交事务。它也同时实现了过去的读写锁机制,用来支持非事务表的情形。

Hive Metastore 负责分配新的事务 ID。这一过程是在一个数据库事务中完成的,从而避免多个 Metastore 实例冲突的情况。

abstract class TxnHandler {
  private List<Long> openTxns(Connection dbConn, Statement stmt, OpenTxnRequest rqst) {
    String s = sqlGenerator.addForUpdateClause("select ntxn_next from NEXT_TXN_ID");
    s = "update NEXT_TXN_ID set ntxn_next = " + (first + numTxns);
    for (long i = first; i < first + numTxns; i++) {
      txnIds.add(i);
      rows.add(i + "," + quoteChar(TXN_OPEN) + "," + now + "," + now + ","
          + quoteString(rqst.getUser()) + "," + quoteString(rqst.getHostname()) + "," + txnType.getValue());
    }
    List<String> queries = sqlGenerator.createInsertValuesStmt(
        "TXNS (txn_id, txn_state, txn_started, txn_last_heartbeat, txn_user, txn_host, txn_type)", rows);
  }
}

参考资料

  • Hive Transactions
  • Transactional Operations in Apache Hive
  • ORCFile ACID Support
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-09-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据真好玩 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 插入数据
    • 增量数据抽取 API V2
    • 更新数据
    • 合并表
    • 压缩
    • 选择文件
    • 向量化查询
    • 参考资料
    相关产品与服务
    云数据库 MySQL
    腾讯云数据库 MySQL(TencentDB for MySQL)为用户提供安全可靠,性能卓越、易于维护的企业级云数据库服务。其具备6大企业级特性,包括企业级定制内核、企业级高可用、企业级高可靠、企业级安全、企业级扩展以及企业级智能运维。通过使用腾讯云数据库 MySQL,可实现分钟级别的数据库部署、弹性扩展以及全自动化的运维管理,不仅经济实惠,而且稳定可靠,易于运维。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档