首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Linux-3.14.12内存管理笔记【伙伴管理算法(1)】

Linux-3.14.12内存管理笔记【伙伴管理算法(1)】

作者头像
233333
发布2019-10-08 15:21:17
7400
发布2019-10-08 15:21:17
举报

前面分析了memblock算法、内核页表的建立、内存管理框架的构建,这些都是x86处理的setup_arch()函数里面初始化的,因地制宜,具有明显处理器的特征。而start_kernel()接下来的初始化则是linux通用的内存管理算法框架了。

build_all_zonelists()用来初始化内存分配器使用的存储节点中的管理区链表,是为内存管理算法(伙伴管理算法)做准备工作的。具体实现:

【file:/mm/page_alloc.c】
/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
 */
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
{
    set_zonelist_order();
 
    if (system_state == SYSTEM_BOOTING) {
        __build_all_zonelists(NULL);
        mminit_verify_zonelist();
        cpuset_init_current_mems_allowed();
    } else {
#ifdef CONFIG_MEMORY_HOTPLUG
        if (zone)
            setup_zone_pageset(zone);
#endif
        /* we have to stop all cpus to guarantee there is no user
           of zonelist */
        stop_machine(__build_all_zonelists, pgdat, NULL);
        /* cpuset refresh routine should be here */
    }
    vm_total_pages = nr_free_pagecache_pages();
    /*
     * Disable grouping by mobility if the number of pages in the
     * system is too low to allow the mechanism to work. It would be
     * more accurate, but expensive to check per-zone. This check is
     * made on memory-hotadd so a system can start with mobility
     * disabled and enable it later
     */
    if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
        page_group_by_mobility_disabled = 1;
    else
        page_group_by_mobility_disabled = 0;
 
    printk("Built %i zonelists in %s order, mobility grouping %s. "
        "Total pages: %ld\n",
            nr_online_nodes,
            zonelist_order_name[current_zonelist_order],
            page_group_by_mobility_disabled ? "off" : "on",
            vm_total_pages);
#ifdef CONFIG_NUMA
    printk("Policy zone: %s\n", zone_names[policy_zone]);
#endif
}

首先看到set_zonelist_order():

【file:/mm/page_alloc.c】
static void set_zonelist_order(void)
{
    current_zonelist_order = ZONELIST_ORDER_ZONE;
}

此处用于设置zonelist的顺序,ZONELIST_ORDER_ZONE用于表示顺序(-zonetype, [node] distance),另外还有ZONELIST_ORDER_NODE表示顺序([node] distance, -zonetype)。但其仅限于对NUMA环境存在区别,非NUMA环境则毫无差异。

如果系统状态system_state为SYSTEM_BOOTING,系统状态只有在start_kernel执行到最后一个函数rest_init后,才会进入SYSTEM_RUNNING,于是初始化时将会接着是__build_all_zonelists()函数:

【file:/mm/page_alloc.c】
/* return values int ....just for stop_machine() */
static int __build_all_zonelists(void *data)
{
    int nid;
    int cpu;
    pg_data_t *self = data;
 
#ifdef CONFIG_NUMA
    memset(node_load, 0, sizeof(node_load));
#endif
 
    if (self && !node_online(self->node_id)) {
        build_zonelists(self);
        build_zonelist_cache(self);
    }
 
    for_each_online_node(nid) {
        pg_data_t *pgdat = NODE_DATA(nid);
 
        build_zonelists(pgdat);
        build_zonelist_cache(pgdat);
    }
 
    /*
     * Initialize the boot_pagesets that are going to be used
     * for bootstrapping processors. The real pagesets for
     * each zone will be allocated later when the per cpu
     * allocator is available.
     *
     * boot_pagesets are used also for bootstrapping offline
     * cpus if the system is already booted because the pagesets
     * are needed to initialize allocators on a specific cpu too.
     * F.e. the percpu allocator needs the page allocator which
     * needs the percpu allocator in order to allocate its pagesets
     * (a chicken-egg dilemma).
     */
    for_each_possible_cpu(cpu) {
        setup_pageset(&per_cpu(boot_pageset, cpu), 0);
 
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
        /*
         * We now know the "local memory node" for each node--
         * i.e., the node of the first zone in the generic zonelist.
         * Set up numa_mem percpu variable for on-line cpus. During
         * boot, only the boot cpu should be on-line; we'll init the
         * secondary cpus' numa_mem as they come on-line. During
         * node/memory hotplug, we'll fixup all on-line cpus.
         */
        if (cpu_online(cpu))
            set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
    }
 
    return 0;
}

其中build_zonelists_node()函数实现:

【file:/mm/page_alloc.c】
/*
 * Builds allocation fallback zone lists.
 *
 * Add all populated zones of a node to the zonelist.
 */
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
                int nr_zones)
{
    struct zone *zone;
    enum zone_type zone_type = MAX_NR_ZONES;
 
    do {
        zone_type--;
        zone = pgdat->node_zones + zone_type;
        if (populated_zone(zone)) {
            zoneref_set_zone(zone,
                &zonelist->_zonerefs[nr_zones++]);
            check_highest_zone(zone_type);
        }
    } while (zone_type);
 
    return nr_zones;
}

populated_zone()用于判断管理区zone的present_pages成员是否为0,如果不为0的话,表示该管理区存在页面,那么则通过zoneref_set_zone()将其设置到zonelist的_zonerefs里面,而check_highest_zone()在没有开启NUMA的情况下是个空函数。由此可以看出build_zonelists_node()实则上是按照ZONE_HIGHMEM—>ZONE_NORMAL—>ZONE_DMA的顺序去迭代排布到_zonerefs里面的,表示一个申请内存的代价由低廉到昂贵的顺序,这是一个分配内存时的备用次序。

回到build_zonelists()函数中,而它代码显示将本地的内存管理区进行分配备用次序排序,接着再是分配内存代价低于本地的,最后才是分配内存代价高于本地的。

分析完build_zonelists(),再回到__build_all_zonelists()看一下build_zonelist_cache():

【file:/mm/page_alloc.c】
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
static void build_zonelist_cache(pg_data_t *pgdat)
{
    pgdat->node_zonelists[0].zlcache_ptr = NULL;
}

该函数与CONFIG_NUMA相关,用来设置zlcache相关的成员。由于没有开启该配置,故直接设置为NULL。

基于build_all_zonelists()调用__build_all_zonelists()入参为NULL,由此可知__build_all_zonelists()运行的代码是:

for_each_online_node(nid) {

    pg_data_t *pgdat = NODE_DATA(nid);

    build_zonelists(pgdat);

    build_zonelist_cache(pgdat);

}

主要是设置各个内存管理节点node里面各自的内存管理分区zone的内存分配次序。

__build_all_zonelists()接着的是:

for_each_possible_cpu(cpu) {

    setup_pageset(&per_cpu(boot_pageset, cpu), 0);

#ifdef CONFIG_HAVE_MEMORYLESS_NODES
    if (cpu_online(cpu))
        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif

}

其中CONFIG_HAVE_MEMORYLESS_NODES未配置,主要分析一下setup_pageset():

【file:/mm/page_alloc.c】
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
    pageset_init(p);
    pageset_set_batch(p, batch);
}

setup_pageset()里面调用的两个函数较为简单,就直接过一下。先是:

【file:/mm/page_alloc.c】
static void pageset_init(struct per_cpu_pageset *p)
{
    struct per_cpu_pages *pcp;
    int migratetype;
 
    memset(p, 0, sizeof(*p));
 
    pcp = &p->pcp;
    pcp->count = 0;
    for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
        INIT_LIST_HEAD(&pcp->lists[migratetype]);
}

pageset_init()主要是将struct per_cpu_pages结构体进行初始化,而pageset_set_batch()则是对其进行设置。pageset_set_batch()实现:

【file:/mm/page_alloc.c】
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
        unsigned long batch)
{
       /* start with a fail safe value for batch */
    pcp->batch = 1;
    smp_wmb();
 
       /* Update high, then batch, in order */
    pcp->high = high;
    smp_wmb();
 
    pcp->batch = batch;
}
 
/* a companion to pageset_set_high() */
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
    pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
}

setup_pageset()函数入参p是一个struct per_cpu_pageset结构体的指针,per_cpu_pageset结构是内核的各个zone用于每CPU的页面高速缓存管理结构。该高速缓存包含一些预先分配的页面,以用于满足本地CPU发出的单一内存请求。而struct per_cpu_pages定义的pcp是该管理结构的成员,用于具体页面管理。原本是每个管理结构有两个pcp数组成员,里面的两条队列分别用于冷页面和热页面管理,而当前分析的3.14.12版本已经将两者合并起来,统一管理冷热页,热页面在队列前面,而冷页面则在队列后面。暂且先记着这么多,后续在Buddy算法的时候再详细分析了。

**至此,可以知道__build_all_zonelists()是内存管理框架向后续的内存页面管理算法做准备,排布了内存管理区zone的分配次序,同时初始化了冷热页管理。**

最后回到build_all_zonelists()函数。由于没有开启内存初始化调试功能CONFIG_DEBUG_MEMORY_INIT,mminit_verify_zonelist()是一个空函数。

基于CONFIG_CPUSETS配置项开启的情况下,而cpuset_init_current_mems_allowed()实现如下:

【file:/kernel/cpuset.c】
void cpuset_init_current_mems_allowed(void)
{
    nodes_setall(current->mems_allowed);
}

这里面的current 是一个cpuset的数据结构,用来管理cgroup中的任务能够使用的cpu和内存节点。而成员mems_allowed,该成员是nodemask_t类型的结构体

【file:/include/linux/nodemask.h】
typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t;

该结构其实就是定义了一个位域,每个位对应一个内存结点,如果置1表示该节点内存可用。而nodes_setall则是将这个位域中每个位都置1。

末了看一下build_all_zonelists()里面nr_free_pagecache_pages()的实现:

【file:/mm/page_alloc.c】
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
 */
unsigned long nr_free_pagecache_pages(void)
{
    return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}

而里面调用的nr_free_zone_pages()实现为:

【file:/mm/page_alloc.c】
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index. For each
 * zone, the number of pages is calculated as:
 * managed_pages - high_pages
 */
static unsigned long nr_free_zone_pages(int offset)
{
    struct zoneref *z;
    struct zone *zone;
 
    /* Just pick one node, since fallback list is circular */
    unsigned long sum = 0;
 
    struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
 
    for_each_zone_zonelist(zone, z, zonelist, offset) {
        unsigned long size = zone->managed_pages;
        unsigned long high = high_wmark_pages(zone);
        if (size > high)
            sum += size - high;
    }
 
    return sum;
}

可以看到nr_free_zone_pages()遍历所有内存管理区并将各管理区的内存空间求和,其实质是用于统计所有的管理区可以用于分配的内存页面数。

接着在build_all_zonelists()后面则是判断当前系统中的内存页框数目,以决定是否启用流动分组机制(Mobility Grouping),该机制可以在分配大内存块时减少内存碎片。通常只有内存足够大时才会启用该功能,否则将会提升消耗降低性能。其中pageblock_nr_pages表示伙伴系统中的最高阶页块所能包含的页面数。

至此,内存管理框架算法基本准备完毕。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019-10-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档