前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >直观理解梯度,以及偏导数、方向导数和法向量等

直观理解梯度,以及偏导数、方向导数和法向量等

作者头像
李拜六不开鑫
修改2020-04-26 16:01:17
2.8K0
修改2020-04-26 16:01:17
举报
文章被收录于专栏:本立2道生本立2道生

目录

博客:blog.shinelee.me | 博客园 | CSDN

写在前面

梯度是微积分中的基本概念,也是机器学习解优化问题经常使用的数学工具(梯度下降算法),虽然常说常听常见,但其细节、物理意义以及几何解释还是值得深挖一下,这些不清楚,梯度就成了“熟悉的陌生人”,仅仅“记住就完了”在用时难免会感觉不踏实,为了“用得放心”,本文将尝试直观地回答以下几个问题,

  • 梯度与偏导数的关系?
  • 梯度与方向导数的关系?
  • 为什么说梯度方向是上升最快的方向,负梯度方向为下降最快的方向?
  • 梯度的模有什么物理意义?
  • 等高线图中绘制的梯度为什么垂直于等高线?
  • 全微分与隐函数的梯度有什么关系?
  • 梯度为什么有时又成了法向量?

闲话少说,书归正传。在全篇“作用域”内,假定函数可导。

偏导数

在博文《单变量微分、导数与链式法则 博客园 | CSDN | blog.shinelee.me》中,我们回顾了常见初等函数的导数,概括地说,

导数是一元函数的变化率(斜率)。导数也是函数,是函数的变化率与位置的关系。

如果是多元函数呢?则为偏导数

偏导数是多元函数“退化”成一元函数时的导数,这里“退化”的意思是固定其他变量的值,只保留一个变量,依次保留每个变量,则(N)元函数有(N)个偏导数。以二元函数为例,令(z=f(x,y))

,绘制在3维坐标系如下图所示,

由上可知,一个变量对应一个坐标轴,偏导数为函数在每个位置处沿着自变量坐标轴方向上的导数(切线斜率)

方向导数

如果是方向不是沿着坐标轴方向,而是任意方向呢?则为方向导数。如下图所示,点(P)位置处红色箭头方向的方向导数为黑色切线的斜率,来自链接Directional Derivative

方向导数为函数在某一个方向上的导数,具体地,定义xy平面上一点(a, b)以及单位向量vec u = (cos theta ,sin theta ),在曲面z=f(x, y)上,从点(a,b, f(a,b))出发,沿vec u = (cos theta ,sin theta )方向走t单位长度后,函数值z为F(t)=f(a+t cos theta, b + t sin theta),则点(a,b)处vec u = (cos theta ,sin theta )方向的方向导数为:

\begin{aligned} &\left.\frac{d}{d t} f(a+t \cos \theta, b+t \sin \theta)\right|_{t=0} \\=& \lim _{t \rightarrow 0} \frac{f(a+t \cos \theta, b+t \sin \theta) - f(a, b)}{t} \\=& \lim _{t \rightarrow 0} \frac{f(a+t \cos \theta, b+t \sin \theta) - f(a, b+t \sin \theta)}{t} + \lim _{t \rightarrow 0} \frac{f(a, b+t \sin \theta) - f(a, b)}{t} \\=& \frac{\partial}{\partial x} f(a, b) \frac{d x}{d t}+\frac{\partial}{\partial y} f(a, b) \frac{d y}{d t} \\=& f_x (a, b) \cos \theta+ f_y (a, b) \sin \theta \\=&\left(f_x (a, b), f_y (a, b)\right) \cdot(\cos \theta, \sin \theta) \end{aligned}

上面推导中使用了链式法则。其中,f_x (a, b)和f_y (a, b)分别为函数在(a, b)位置的偏导数。由上面的推导可知:

该位置处,任意方向的方向导数为偏导数的线性组合,系数为该方向的单位向量。当该方向与坐标轴正方向一致时,方向导数即偏导数,换句话说,偏导数为坐标轴方向上的方向导数,其他方向的方向导数为偏导数的合成

写成向量形式,偏导数构成的向量为nabla f(a, b) = (f_x (a, b), f_y (a, b)),称之为梯度

梯度

梯度,写作nabla f,二元时为(frac{part{z}}{part{x}}, frac{part{z}}{part{y}}),多元时为(frac{part{z}}{part{x}, frac{part{z}}{part{y}},dots))。我们继续上面方向导数的推导,(a,b)处theta方向上的方向导数为

\begin{aligned} &\left(f_x (a, b), f_y (a, b)\right) \cdot(\cos \theta, \sin \theta) \\ =& |((f_x (a, b), f_y (a, b))| \cdot |1| \cdot \cos \phi \\=& |\nabla f(a,b)| \cdot \cos \phi \end{aligned}

其中,phi为nabla f(a,b)与vec u的夹角,显然,当phi = 0即vec u与梯度nabla f(a,b)同向时方向导数取得最大值最大值为梯度的模|nabla f(a,b)|,当phi = pi即vec u与梯度nabla f(a,b)反向时方向导数取得最小值,最小值为梯度模的相反数。此外,根据上面方向导数的公式可知,在夹角phi < frac{pi}{2}时方向导数为正,表示vec u方向函数值上升,phi > frac{pi}{2}时方向导数为负,表示该方向函数值下降。

至此,方才有了梯度的几何意义

  1. 当前位置的梯度方向,为函数在该位置处方向导数最大的方向,也是函数值上升最快的方向,反方向为下降最快的方向;
  2. 当前位置的梯度长度(模),为最大方向导数的值。

等高线图中的梯度

在讲解各种优化算法时,我们经常看到目标函数的等高线图示意图,如下图所示,来自链接Applet: Gradient and directional derivative on a mountain

图中,红点为当前位置,红色箭头为梯度,绿色箭头为其他方向,其与梯度的夹角为theta。将左图中z=f(x, y)

曲面上的等高线投影到xy平面,得到右图的等高线图。

梯度与等高线垂直。为什么呢?

等高线,顾名思义,即这条线上的点高度(函数值)相同,令某一条等高线为z=f(x,y)=C,C为常数,两边同时全微分,如下所示

隐函数的梯度

小结

至此,文章开篇几个问题的答案就不难得出了,

  • 偏导数构成的向量为梯度;
  • 方向导数为梯度在该方向上的合成,系数为该方向的单位向量;
  • 梯度方向为方向导数最大的方向,梯度的模为最大的方向导数;
  • 微分的结果为梯度与微分向量的内积
  • 等高线全微分的结果为0,所以其梯度垂直于等高线,同时指向高度更高的等高线
  • 隐函数可以看成是一种等高线,其梯度为高维曲面(曲线)的法向量

以上。

参考

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019-10-21 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 写在前面
  • 偏导数
  • 方向导数
  • 梯度
  • 等高线图中的梯度
  • 隐函数的梯度
  • 小结
  • 参考
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档