前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >一篇文章看懂分布式一致性算法

一篇文章看懂分布式一致性算法

作者头像
lyb-geek
发布2019-10-28 17:22:48
5.8K0
发布2019-10-28 17:22:48
举报
文章被收录于专栏:Linyb极客之路Linyb极客之路

什么是分布式服务系统

分布式服务顾名思义服务是分散部署在不同的机器上的,一个服务可能负责几个功能,是一种面向SOA架构的,服务之间也是通过rpc来交互或者是http service来交互的。逻辑架构设计完后就该做物理架构设计,系统应用部署在超过一台服务器或虚拟机上,且各分开部署的部分彼此通过各种通讯协议交互信息,就可算作分布式部署。

什么是分布式一致性

分布式系统通常由异步网络连接的多个节点构成,每个节点有独立的计算和存储,节点之间通过网络通信进行协作。分布式一致性指多个节点对某一变量的取值达成一致,一旦达成一致,则变量的本次取值即被确定。

在分布式存储系统中,通常以多副本冗余的方式实现数据的可靠存储。同一份数据的多个副本必须保证一致,而数据的多个副本又存储在不同的节点中,这里的分布式一致性问题就是存储在不同节点中的数据副本(或称为变量)的取值必须一致。不仅如此,因为变量是可变的,变量会有多次取值,变量的多次取值构成一个序列,分布式一致性还要求多个节点对该变量的取值序列必须一致。

在大量客户端并发请求读/写的情况下,维护数据多副本的一致性无疑非常重要,且富有挑战。因此,分布式一致性在我们生产环境中显得尤为重要。

一致性的重要性

1、状态一致性

分布式领域CAP理论告诉我们,任何一个分布式系统都无法同时满足Consistency(一致性)、Availability(可用性)、Partition tolerance(分区容错性) 这三个基本需求。最多只能满足其中两项。但是,一个分布式系统无论在CAP三者之间如何权衡,都无法彻底放弃一致性(Consistency),如果真的放弃一致性,那么就说明这个系统中的数据根本不可信,数据也就没有意义,那么这个系统也就没有任何价值可言。所以,无论如何,分布式系统的一致性问题都需要重点关注。

这里先简单提一下,由于一个分布式系统不可能放弃一致性,那么为什么有的架构师还说在某些场景中可以牺牲一致性呢?通常这里说的放弃一致性指的是放弃数据的强一致性(后文介绍什么是强一致性)。

通常情况下,我们所说的分布式一致性问题通常指的是数据一致性问题。那么我们就先来了解一下什么是数据一致性。

2、数据一致性

数据一致性其实是数据库系统中的概念。我们可以简单的把一致性理解为正确性或者完整性,那么数据一致性通常指关联数据之间的逻辑关系是否正确和完整。我们知道,在数据库系统中通常用事务(访问并可能更新数据库中各种数据项的一个程序执行单元)来保证数据的一致性和完整性。而在分布式系统中,数据一致性往往指的是由于数据的复制,不同数据节点中的数据内容是否完整并且相同。

分布式一致性算法的意义

如何实现分布式一致性算法

paxos 理论算法

Paxos算法类似于两阶段提提交,其算法执行过程分为两个阶段包括:

1.承诺 2.接受

阶段一(prepare阶段):

(a) Proposer选择一个提案编号N,然后向半数以上的Acceptor发送编号为N的Prepare请求。Pareper(N)

(b) 如果一个Acceptor收到一个编号为N的Prepare请求,如果小于它已经响应过的请求,则拒绝,不回应或回复error。若N大于该Acceptor已经响应过的所有Prepare请求的编号(maxN),那么它就会将它已经接受过(已经经过第二阶段accept的提案)的编号最大的提案(如果有的话,如果还没有的accept提案的话返回{pok,null,null})作为响应反馈给Proposer,同时该Acceptor承诺不再接受任何编号小于N的提案。

阶段二(accept阶段):

(a) 如果一个Proposer收到半数以上Acceptor对其发出的编号为N的Prepare请求的响应,那么它就会发送一个针对[N,V]提案的Accept请求给半数以上的Acceptor。注意:V就是收到的响应中编号最大的提案的value(某个acceptor响应的它已经通过的{acceptN,acceptV}),如果响应中不包含任何提案,那么V就由Proposer自己决定。

(b) 如果Acceptor收到一个针对编号为N的提案的Accept请求,只要该Acceptor没有对编号大于N的Prepare请求做出过响应,它就接受该提案。如果N小于Acceptor以及响应的prepare请求,则拒绝,不回应或回复error(当proposer没有收到过半的回应,那么他会重新进入第一阶段,递增提案号,重新提出prepare请求)。

注意:有几个约定:

(1)每一个Acceptor最多就只能批准一个提案(就是第二阶段accept的),那么就能保证只有一个提案被选定了???Accept之后就不能改了???如果不能改的话,那Acceptor肯定不是一致的,而且这样能达到多数??但是,如果能改的话,倒是能达成一致,但是这样真的可以??我感觉是可以accept多个的,但是书上又写了每一个Acceptor最多就只能批准一个提案。但后边也写了改变accept的值,不懂。。。。。。。最后,我觉得是只能accept一个,proposer会达成一致的value1,所以选出了唯一的value。应该不会出现那个始终达不成过半情况,因为毕竟发送时有先后的。所以,下边的图画的还是不那么准确。

(2)因为获取那些已经通过的提案比预测未来可能会通过的提案来的简单。当Acceptor对一个N的prepare的提案响应后,他就会作出保证,不再接受任何小于N的提案号的提案。

raft 理论算法

选举过程详解

上面已经说过,如果follower在election timeout内没有收到来自leader的心跳,(也许此时还没有选出leader,大家都在等;也许leader挂了;也许只是leader与该follower之间网络故障),则会主动发起选举。步骤如下:

  • 增加节点本地的 current term ,切换到candidate状态
  • 投自己一票
  • 并行给其他节点发送 RequestVote RPCs
  • 等待其他节点的回复

在这个过程中,根据来自其他节点的消息,可能出现三种结果

  1. 收到majority的投票(含自己的一票),则赢得选举,成为leader
  2. 被告知别人已当选,那么自行切换到follower
  3. 一段时间内没有收到majority投票,则保持candidate状态,重新发出选举

第一种情况,赢得了选举之后,新的leader会立刻给所有节点发消息,广而告之,避免其余节点触发新的选举。在这里,先回到投票者的视角,投票者如何决定是否给一个选举请求投票呢,有以下约束:

  • 在任一任期内,单个节点最多只能投一票
  • 候选人知道的信息不能比自己的少(这一部分,后面介绍log replication和safety的时候会详细介绍)
  • first-come-first-served 先来先得

第二种情况,比如有三个节点A B C。A B同时发起选举,而A的选举消息先到达C,C给A投了一票,当B的消息到达C时,已经不能满足上面提到的第一个约束,即C不会给B投票,而A和B显然都不会给对方投票。A胜出之后,会给B,C发心跳消息,节点B发现节点A的term不低于自己的term,知道有已经有Leader了,于是转换成follower。

第三种情况,没有任何节点获得majority投票,比如下图这种情况:

zab 协议

Leader选举

Leader选举概述

Leader选举是保证分布式数据一致性的关键所在。当Zookeeper集群中的一台服务器出现以下两种情况之一时,需要进入Leader选举。

(1) 服务器初始化启动。

(2) 服务器运行期间无法和Leader保持连接。

下面就两种情况进行分析讲解。

1. 服务器启动时期的Leader选举

若进行Leader选举,则至少需要两台机器,这里选取3台机器组成的服务器集群为例。在集群初始化阶段,当有一台服务器Server1启动时,其单独无法进行和完成Leader选举,当第二台服务器Server2启动时,此时两台机器可以相互通信,每台机器都试图找到Leader,于是进入Leader选举过程。选举过程如下

(1) 每个Server发出一个投票。由于是初始情况,Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid和ZXID,使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),然后各自将这个投票发给集群中其他机器。

(2) 接受来自各个服务器的投票。集群的每个服务器收到投票后,首先判断该投票的有效性,如检查是否是本轮投票、是否来自LOOKING状态的服务器。

(3) 处理投票。针对每一个投票,服务器都需要将别人的投票和自己的投票进行PK,PK规则如下

· 优先检查ZXID。ZXID比较大的服务器优先作为Leader。

· 如果ZXID相同,那么就比较myid。myid较大的服务器作为Leader服务器。

对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0,再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。

(4) 统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息,对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为已经选出了Leader。

(5) 改变服务器状态。一旦确定了Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为FOLLOWING,如果是Leader,就变更为LEADING。

2. 服务器运行时期的Leader选举

在Zookeeper运行期间,Leader与非Leader服务器各司其职,即便当有非Leader服务器宕机或新加入,此时也不会影响Leader,但是一旦Leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮Leader选举,其过程和启动时期的Leader选举过程基本一致。假设正在运行的有Server1、Server2、Server3三台服务器,当前Leader是Server2,若某一时刻Leader挂了,此时便开始Leader选举。选举过程如下

(1) 变更状态。Leader挂后,余下的非Observer服务器都会讲自己的服务器状态变更为LOOKING,然后开始进入Leader选举过程。

(2) 每个Server会发出一个投票。在运行期间,每个服务器上的ZXID可能不同,此时假定Server1的ZXID为123,Server3的ZXID为122;在第一轮投票中,Server1和Server3都会投自己,产生投票(1, 123),(3, 122),然后各自将投票发送给集群中所有机器。

(3) 接收来自各个服务器的投票。与启动时过程相同。

(4) 处理投票。与启动时过程相同,此时,Server1将会成为Leader。

(5) 统计投票。与启动时过程相同。

(6) 改变服务器的状态。与启动时过程相同。

2.2 Leader选举算法分析

在3.4.0后的Zookeeper的版本只保留了TCP版本的FastLeaderElection选举算法。当一台机器进入Leader选举时,当前集群可能会处于以下两种状态

· 集群中已经存在Leader。

· 集群中不存在Leader。

对于集群中已经存在Leader而言,此种情况一般都是某台机器启动得较晚,在其启动之前,集群已经在正常工作,对这种情况,该机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器而言,仅仅需要和Leader机器建立起连接,并进行状态同步即可。而在集群中不存在Leader情况下则会相对复杂,其步骤如下

(1) 第一次投票。无论哪种导致进行Leader选举,集群的所有机器都处于试图选举出一个Leader的状态,即LOOKING状态,LOOKING机器会向所有其他机器发送消息,该消息称为投票。投票中包含了SID(服务器的唯一标识)和ZXID(事务ID),(SID, ZXID)形式来标识一次投票信息。假定Zookeeper由5台机器组成,SID分别为1、2、3、4、5,ZXID分别为9、9、9、8、8,并且此时SID为2的机器是Leader机器,某一时刻,1、2所在机器出现故障,因此集群开始进行Leader选举。在第一次投票时,每台机器都会将自己作为投票对象,于是SID为3、4、5的机器投票情况分别为(3, 9),(4, 8), (5, 8)。

(2) 变更投票。每台机器发出投票后,也会收到其他机器的投票,每台机器会根据一定规则来处理收到的其他机器的投票,并以此来决定是否需要变更自己的投票,这个规则也是整个Leader选举算法的核心所在,其中术语描述如下

· vote_sid:接收到的投票中所推举Leader服务器的SID。

· vote_zxid:接收到的投票中所推举Leader服务器的ZXID。

· self_sid:当前服务器自己的SID。

· self_zxid:当前服务器自己的ZXID。

每次对收到的投票的处理,都是对(vote_sid, vote_zxid)和(self_sid, self_zxid)对比的过程。

规则一:如果vote_zxid大于self_zxid,就认可当前收到的投票,并再次将该投票发送出去。

规则二:如果vote_zxid小于self_zxid,那么坚持自己的投票,不做任何变更。

规则三:如果vote_zxid等于self_zxid,那么就对比两者的SID,如果vote_sid大于self_sid,那么就认可当前收到的投票,并再次将该投票发送出去。

规则四:如果vote_zxid等于self_zxid,并且vote_sid小于self_sid,那么坚持自己的投票,不做任何变更。

结合上面规则,给出下面的集群变更过程。

(3) 确定Leader。经过第二轮投票后,集群中的每台机器都会再次接收到其他机器的投票,然后开始统计投票,如果一台机器收到了超过半数的相同投票,那么这个投票对应的SID机器即为Leader。此时Server3将成为Leader。

由上面规则可知,通常那台服务器上的数据越新(ZXID会越大),其成为Leader的可能性越大,也就越能够保证数据的恢复。如果ZXID相同,则SID越大机会越大。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-10-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Linyb极客之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 什么是分布式服务系统
  • 什么是分布式一致性
  • 一致性的重要性
  • 分布式一致性算法的意义
  • 如何实现分布式一致性算法
  • paxos 理论算法
  • raft 理论算法
  • zab 协议
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档