前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >最大期望算法EM,极大似然函数

最大期望算法EM,极大似然函数

作者头像
大数据技术与机器学习
发布2019-11-20 22:22:03
2.1K0
发布2019-11-20 22:22:03
举报

目录

  • 1. 什么是EM算法
    • 1.1 似然函数
    • 1.3 极大似然函数的求解步骤
    • 1.4 EM算法
  • 2. 采用 EM 算法求解的模型有哪些?
  • 3.代码实现
  • 4. 参考文献

1. 什么是EM算法

最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。

最大期望算法经过两个步骤交替进行计算,

第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值; 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。

极大似然估计用一句话概括就是:知道结果,反推条件θ。

1.1 似然函数

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性。而极大似然就相当于最大可能的意思。

比如你一位同学和一位猎人一起外出打猎,一只野兔从前方窜过。只听一声枪响,野兔应声到下,如果要你推测,这一发命中的子弹是谁打的?你就会想,只发一枪便打中,由于猎人命中的概率一般大于你那位同学命中的概率,从而推断出这一枪应该是猎人射中的。

这个例子所作的推断就体现了最大似然法的基本思想。

多数情况下我们是根据已知条件来推算结果,而最大似然估计是已经知道了结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。

1.3 极大似然函数的求解步骤

假定我们要从10万个人当中抽取100个人来做身高统计,那么抽到这100个人的概率就是(概率连乘):

对于求一个函数的极值,通过我们在本科所学的微积分知识,最直接的设想是求导,然后让导数为0,那么解这个方程得到的θ就是了(当然,前提是函数L(θ)连续可微)。但,如果θ是包含多个参数的向量那怎么处理呢?当然是求L(θ)对所有参数的偏导数,也就是梯度了,从而n个未知的参数,就有n个方程,方程组的解就是似然函数的极值点了,最终得到这n个参数的值。

求极大似然函数估计值的一般步骤:

  1. 写出似然函数;
  2. 对似然函数取对数,并整理;
  3. 求导数,令导数为0,得到似然方程;
  4. 解似然方程,得到的参数即为所求;

1.4 EM算法

两枚硬币A和B,假定随机抛掷后正面朝上概率分别为PA,PB。为了估计这两个硬币朝上的概率,咱们轮流抛硬币A和B,每一轮都连续抛5次,总共5轮:

OK,问题变得有意思了。现在我们的目标没变,还是估计PA和PB,需要怎么做呢?

显然,此时我们多了一个硬币种类的隐变量,设为z,可以把它认为是一个5维的向量(z1,z2,z3,z4,z5),代表每次投掷时所使用的硬币,比如z1,就代表第一轮投掷时使用的硬币是A还是B。

  • 但是,这个变量z不知道,就无法去估计PA和PB,所以,我们必须先估计出z,然后才能进一步估计PA和PB。
  • 可要估计z,我们又得知道PA和PB,这样我们才能用极大似然概率法则去估计z,这不是鸡生蛋和蛋生鸡的问题吗,如何破?

答案就是先随机初始化一个PA和PB,用它来估计z,然后基于z,还是按照最大似然概率法则去估计新的PA和PB,然后依次循环,如果新估计出来的PA和PB和我们真实值差别很大,直到PA和PB收敛到真实值为止。

我们不妨这样,先随便给PA和PB赋一个值,比如:硬币A正面朝上的概率PA = 0.2 硬币B正面朝上的概率PB = 0.7

然后,我们看看第一轮抛掷最可能是哪个硬币。如果是硬币A,得出3正2反的概率为 0.20.20.20.80.8 = 0.00512 如果是硬币B,得出3正2反的概率为0.70.70.70.30.3=0.03087 然后依次求出其他4轮中的相应概率。做成表格如下:

按照最大似然法则:第1轮中最有可能的是硬币B 第2轮中最有可能的是硬币A 第3轮中最有可能的是硬币A 第4轮中最有可能的是硬币B 第5轮中最有可能的是硬币A

我们就把概率更大,即更可能是A的,即第2轮、第3轮、第5轮出现正的次数2、1、2相加,除以A被抛的总次数15(A抛了三轮,每轮5次),作为z的估计值,B的计算方法类似。然后我们便可以按照最大似然概率法则来估计新的PA和PB。

PA = (2+1+2)/15 = 0.33 PB =(3+3)/10 = 0.6

就这样,不断迭代 不断接近真实值,这就是EM算法的奇妙之处。

可以期待,我们继续按照上面的思路,用估计出的PA和PB再来估计z,再用z来估计新的PA和PB,反复迭代下去,就可以最终得到PA = 0.4,PB=0.5,此时无论怎样迭代,PA和PB的值都会保持0.4和0.5不变,于是乎,我们就找到了PA和PB的最大似然估计。

总结一下计算步骤:

  1. 随机初始化分布参数θ
  2. E步,求Q函数,对于每一个i,计算根据上一次迭代的模型参数来计算出隐性变量的后验概率(其实就是隐性变量的期望),来作为隐藏变量的现估计值:
  1. 然后循环重复2、3步直到收敛。

详细的推导过程请参考文末的参考文献。

2. 采用 EM 算法求解的模型有哪些?

用EM算法求解的模型一般有GMM或者协同过滤,k-means其实也属于EM。EM算法一定会收敛,但是可能收敛到局部最优。由于求和的项数将随着隐变量的数目指数上升,会给梯度计算带来麻烦。

3. 参考文献

如何通俗理解EM算法

https://blog.csdn.net/v_july_v/article/details/81708386

4.代码实现

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-11-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习入门与实战 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 目录
  • 1. 什么是EM算法
    • 1.1 似然函数
      • 1.3 极大似然函数的求解步骤
        • 1.4 EM算法
        • 2. 采用 EM 算法求解的模型有哪些?
        • 3. 参考文献
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档