专栏首页python3python中numpy和pandas介

python中numpy和pandas介

numpy和pandas是python中用于处理数据的两个库。 numpy介绍: numpy用于处理array,且array中数据类型必须一致。下面以代码备注的方式介绍。

#START
import numpy as np

v=np.array([1,2,3,4,5,6,7,8])   //array中以list的方式展现

m=np.array([[1,2,3,4,5,6,7,8],
                    [8,7,6,5,4,3,2,1]])

h=np.array([[1,2,3,4,5,6,7,8],
                    [8,7,6,5,4,3,2,1],
                          [9,8,7,6,5,4,3,2]],dtype=float)   //指定list中数据类型为float

print(v.type)    //查看array类型
print(v.shape)    //查看array模型
#print(np.shape(v))
print(v.size)
#print(np.size(v))
print(v.dtype)
#END
#START
import numpy as np
##如下是一个三行四列的array 
#[1,2,3,4]
#[2,3,4,5]
#[3,4,5,6]
#shape(3,4)
a=np.array([[1,2,3,4],[2,3,4,5],[3,4,5,6]])
b=a[0:2,1:3]     //array切分操作,对比list中的cut。修改b的话a也会变更。

h=np.array([[1,2],[3,4],[5,6]])
i=np.array(h[0,1],h[1,1],h[2,0])   //使用index方法脱离关系,即b变化a不变。
i[[0,0]]=888
print(i)
print(h)

c=np.zeros((2,20))   //生成2行20列的0
print(c)

d=np.ones((20,5))    //生成20行5列的1
print(d)

e=np.full((5,7),888)  //生成5行7列的888
print(e)

f=np.eye(10)    //Identify matrix(I)
print(f)

g=np.random.random((8,19))   //生成随机array
print(g)
#END
#START
j=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
k=np.array([0,2,0,1])

l=j[np.arange(4),k]   //j中前4行按照k中的数值提取列中元素

j[np.arange(4),k] += 100   //j中前4行按照k中的数值提取列中元素后再加100,返回j
print(j)
#END
#START
m=np.array([[1,2,3],[4,5,6],[7,8,9]])
print(m)

boolean_array_indexing =(m>5)   //按照判断条件将array转换成布尔值
print(boolean_array_indexing)
print(m(m>5))
#END
#START
#array四则运算
x=np.array([[1,2],[3,4]],dtype=np.float64)
y=np.array([[5,6],[7,8]],dtype=np.float64)
print(x+y)
print(np.add(x,y))

print(x-y)
print(np.subtract(x,y))

print(x*y)
print(np.multiply(x,y))

print(x/y)
print(np.divide(x,y))

print(np.sqrt(x))

print(x.dot(y))
print(np.dot(x,y))

i=np.array([3,0])
j=np.array([0,4])

print(i.dot(j))
print(np.dot(i.j))

x=np.array([[1,2],[3,4]])
print(x)
print(np.sum(x))
print(np.sum(x,axis=1))
print(x,T)  //变形
#END
#START
x=np,array([[1,2],[3,4],[5,6]])
y=np.array([0,1])
print(x+y)    //broadcasting会自动补齐y中缺少元素
#END
#START
x=np,array([[1,2,3],[3,4,6],[5,6,7],[7,8,9]])
print(x[1,0:2])
y=np.array([1,0,1])
z=np.empty_like(x)   //生成一个和x格式一致的array
print(z)

for i in range(4):
    z[i,:]=x[i,:]+y
#END

pandas介绍: 用于处理.csv文件

import pandas as pd
pd.set_option('display.max_rows',1000)    //用于设置展示的行数和列数
pd.set_option('display.max_columns',1000)

user_input_cols=['','','','','','']   //用于自定义每一列的名称
data_frame=pd.read_csv('diabetes.csv',index_col=0,header=None,
                        name=user_input_cols)   //读取文件

print(df.head())   //展示文件的前几行
**********************
#dataframe   //数据域
#series    //列

df=pd.read_csv('diabetes.csv',index_col=0,header=None,
                        name=user_input_cols)
print(df['series_name'])   //展示列名称

#series相加
print(df.series_name1+df.series_name2)
print(df.series_name1+','+df.series_name2)
new_series=df.series_name1+','+df.series_name2
df['series_name1+series_name2']=new_series

print(df.dtypes)
**********************
#查看数据特征
print(df.describe())

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 10分钟入门Pandas-系列(2)

    pandas默认使用np.nan表示确实数据。 重新索引可以在特定的轴上修改、新增和删除索引。他将返回数据的副本。

    披头
  • 更改形状和背景色、自定义风格、颜色流动…这款词云工具都能做到

    stylecloud 是一个 Python 包,它基于流行的 word_cloud 包,并添加了一些有用的功能,从而创建出独特的词云。stylecloud 具备...

    机器之心
  • 使用python打印99乘法表的3种写法

    99乘法表就是两个数相乘,最大就是 X * X ,而不会出现 X * (X+1),这里可以使用2个for循环,第一层是1-9,第二次最大截止第一层的数字,程序呼...

    披头
  • Python内置方法实现基于秘钥的信息加解密

    在实际编程开发中,我们会使用到各类的加密算法来对数据和信息进行加密。比如密码中比较常见的MD5加密,以及AES加密等等。

    州的先生
  • 数据科学该学习哪门编程语言?Python,R还是Scala?

    做数据科学,到底应该学习哪门编程语言呢?本文将从语言的特性、第三方库、公司使用情况来做一些分析。

    PP鲁
  • Python | 加一行注释,让你的程序提速10+倍!numba十分钟上手指南

    之前的文章《源代码如何被计算机执行》已经提到计算机只能执行二进制的机器码,C、C++等编译型语言依靠编译器将源代码转化为可执行文件后才能运行,Python、Ja...

    PP鲁
  • 10分钟入门Pandas-系列(1)

    常规numpy数据是一种数据类型,而pandas DataFrames每一列有一种数据类型,使用DataFrame.to_numpy()时,将保持所有的数据类型...

    披头
  • Python基础篇 strings 03

    找出子字符串出现频次和出现的索引位置核查是否存在字符串并找出其索引位置查找所有字符的出现次数和索引

    披头
  • GPU计算加速01 : AI时代人人都应该了解的GPU知识

    金融建模、自动驾驶、智能机器人、新材料发现、脑神经科学、医学影像分析...人工智能时代的科学研究极度依赖计算力的支持。提供算力的各家硬件芯片厂商中,最抢镜的当属...

    PP鲁
  • GPU加速04:将CUDA应用于金融领域,使用Python Numba加速B-S期权估值模型

    本文为英伟达GPU计算加速系列的第四篇,主要基于前三篇文章的内容,以金融领域期权估值案例来进行实战练习。前三篇文章为:

    PP鲁

扫码关注云+社区

领取腾讯云代金券