专栏首页python3python+opencv实现目标跟踪

python+opencv实现目标跟踪

python-opencv3.0新增了一些比较有用的追踪器算法,这里根据官网示例写了一个追踪器类

程序只能运行在安装有opencv3.0以上版本和对应的contrib模块的python解释器

#encoding=utf-8

import cv2
from items import MessageItem
import time
import numpy as np
'''
监视者模块,负责入侵检测,目标跟踪
'''
class WatchDog(object):
  #入侵检测者模块,用于入侵检测
    def __init__(self,frame=None):
        #运动检测器构造函数
        self._background = None
        if frame is not None:
            self._background = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
        self.es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
    def isWorking(self):
        #运动检测器是否工作
        return self._background is not None
    def startWorking(self,frame):
        #运动检测器开始工作
        if frame is not None:
            self._background = cv2.GaussianBlur(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), (21, 21), 0)
    def stopWorking(self):
        #运动检测器结束工作
        self._background = None
    def analyze(self,frame):
        #运动检测
        if frame is None or self._background is None:
            return
        sample_frame = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
        diff = cv2.absdiff(self._background,sample_frame)
        diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]
        diff = cv2.dilate(diff, self.es, iterations=2)
        image, cnts, hierarchy = cv2.findContours(diff.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        coordinate = []
        bigC = None
        bigMulti = 0
        for c in cnts:
            if cv2.contourArea(c) < 1500:
                continue
            (x,y,w,h) = cv2.boundingRect(c)
            if w * h > bigMulti:
                bigMulti = w * h
                bigC = ((x,y),(x+w,y+h))
        if bigC:
            cv2.rectangle(frame, bigC[0],bigC[1], (255,0,0), 2, 1)
        coordinate.append(bigC)
        message = {"coord":coordinate}
        message['msg'] = None
        return MessageItem(frame,message)

class Tracker(object):
    '''
    追踪者模块,用于追踪指定目标
    '''
    def __init__(self,tracker_type = "BOOSTING",draw_coord = True):
        '''
        初始化追踪器种类
        '''
        #获得opencv版本
        (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
        self.tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
        self.tracker_type = tracker_type
        self.isWorking = False
        self.draw_coord = draw_coord
        #构造追踪器
        if int(minor_ver) < 3:
            self.tracker = cv2.Tracker_create(tracker_type)
        else:
            if tracker_type == 'BOOSTING':
                self.tracker = cv2.TrackerBoosting_create()
            if tracker_type == 'MIL':
                self.tracker = cv2.TrackerMIL_create()
            if tracker_type == 'KCF':
                self.tracker = cv2.TrackerKCF_create()
            if tracker_type == 'TLD':
                self.tracker = cv2.TrackerTLD_create()
            if tracker_type == 'MEDIANFLOW':
                self.tracker = cv2.TrackerMedianFlow_create()
            if tracker_type == 'GOTURN':
                self.tracker = cv2.TrackerGOTURN_create()
    def initWorking(self,frame,box):
        '''
        追踪器工作初始化
        frame:初始化追踪画面
        box:追踪的区域
        '''
        if not self.tracker:
            raise Exception("追踪器未初始化")
        status = self.tracker.init(frame,box)
        if not status:
            raise Exception("追踪器工作初始化失败")
        self.coord = box
        self.isWorking = True

    def track(self,frame):
        '''
        开启追踪
        '''
        message = None
        if self.isWorking:
            status,self.coord = self.tracker.update(frame)
            if status:
                message = {"coord":[((int(self.coord[0]), int(self.coord[1])),(int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3])))]}
                if self.draw_coord:
                    p1 = (int(self.coord[0]), int(self.coord[1]))
                    p2 = (int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3]))
                    cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
                    message['msg'] = "is tracking"
        return MessageItem(frame,message)

class ObjectTracker(object):
    def __init__(self,dataSet):
        self.cascade = cv2.CascadeClassifier(dataSet)
    def track(self,frame):
        gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
        faces = self.cascade.detectMultiScale(gray,1.03,5)
        for (x,y,w,h) in faces:
            cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
        return frame

if __name__ == '__main__' :
    a = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
    tracker = Tracker(tracker_type="KCF")
    video = cv2.VideoCapture(0)
    ok, frame = video.read()
    bbox = cv2.selectROI(frame, False)
    tracker.initWorking(frame,bbox)
    while True:
        _,frame = video.read();
        if(_):
            item = tracker.track(frame);
            cv2.imshow("track",item.getFrame())
            k = cv2.waitKey(1) & 0xff
            if k == 27:
                break
#encoding=utf-8
import json
from utils import IOUtil
'''
信息封装类
'''
class MessageItem(object):
    #用于封装信息的类,包含图片和其他信息
    def __init__(self,frame,message):
        self._frame = frame
        self._message = message
    def getFrame(self):
        #图片信息
        return self._frame
    def getMessage(self):
        #文字信息,json格式
        return self._message
    def getBase64Frame(self):
        #返回base64格式的图片,将BGR图像转化为RGB图像
        jepg = IOUtil.array_to_bytes(self._frame[...,::-1])
        return IOUtil.bytes_to_base64(jepg)
    def getBase64FrameByte(self):
        #返回base64格式图片的bytes
        return bytes(self.getBase64Frame())
    def getJson(self):
        #获得json数据格式
        dicdata = {"frame":self.getBase64Frame().decode(),"message":self.getMessage()}
        return json.dumps(dicdata)
    def getBinaryFrame(self):
        return IOUtil.array_to_bytes(self._frame[...,::-1])

运行之后在第一帧图像上选择要追踪的部分,测试了一下使用KCF算法的追踪器

更新:忘记放utils,给大家造成的困扰深表歉意

#encoding=utf-8
import time
import numpy
import base64
import os
import logging
import sys
from settings import *
from PIL import Image
from io import BytesIO

#工具类
class IOUtil(object):
    #流操作工具类
    @staticmethod
    def array_to_bytes(pic,formatter="jpeg",quality=70):
        '''
        静态方法,将numpy数组转化二进制流
        :param pic: numpy数组
        :param format: 图片格式
        :param quality:压缩比,压缩比越高,产生的二进制数据越短
        :return: 
        '''
        stream = BytesIO()
        picture = Image.fromarray(pic)
        picture.save(stream,format=formatter,quality=quality)
        jepg = stream.getvalue()
        stream.close()
        return jepg
    @staticmethod
    def bytes_to_base64(byte):
        '''
        静态方法,bytes转base64编码
        :param byte: 
        :return: 
        '''
        return base64.b64encode(byte)
    @staticmethod
    def transport_rgb(frame):
        '''
        将bgr图像转化为rgb图像,或者将rgb图像转化为bgr图像
        '''
        return frame[...,::-1]
    @staticmethod
    def byte_to_package(bytes,cmd,var=1):
        '''
        将每一帧的图片流的二进制数据进行分包
        :param byte: 二进制文件
        :param cmd:命令
        :return: 
        '''
        head = [ver,len(byte),cmd]
        headPack = struct.pack("!3I", *head)
        senddata = headPack+byte
        return senddata
    @staticmethod
    def mkdir(filePath):
        '''
        创建文件夹
        '''
        if not os.path.exists(filePath):
            os.mkdir(filePath)
    @staticmethod
    def countCenter(box):
        '''
        计算一个矩形的中心
        '''
        return (int(abs(box[0][0] - box[1][0])*0.5) + box[0][0],int(abs(box[0][1] - box[1][1])*0.5) +box[0][1])
    @staticmethod
    def countBox(center):
        '''
        根据两个点计算出,x,y,c,r
        '''
        return (center[0][0],center[0][1],center[1][0]-center[0][0],center[1][1]-center[0][1])
    @staticmethod
    def getImageFileName():
        return time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())+'.png'

#构造日志
logger = logging.getLogger(LOG_NAME)
formatter = logging.Formatter(LOG_FORMATTER)
IOUtil.mkdir(LOG_DIR);
file_handler = logging.FileHandler(LOG_DIR + LOG_FILE,encoding='utf-8')
file_handler.setFormatter(formatter)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • select/poll/epoll 对比分析

    select函数监控3类文件描述符,调用select函数后会阻塞,直到描述符fd准备就绪(有数据可读、可写、异常)或者超时,函数便返回。 当select函数返回...

    Yif
  • 关于 Android 中的各种 Bar 和“透明状态栏”的一些知识

    其实这篇主要是讲解适配状态栏的,在这其中可能有些读者对状态栏(StatusBar)、ActionBar、ToolBar、TitleBar有点混淆或者感觉很混乱,...

    开发者
  • 讲给前端的正则表达式(2):写出更优雅、更精确的正则表达式[每日前端夜话0x101]

    今天,我们回到 JavaScript 中的正则表达式。如果你还是新手,请查看上一篇文章。这次,我们将学习如何编写更优雅的模式并定义搜索字符串的位置。

    疯狂的技术宅
  • Flink零基础实战教程:股票价格数据流处理

    之前的《万字长文深度解析WordCount程序》使用WordCount展示了Flink程序的基本结构,本文将以股票价格案例来演示如何使用Flink的DataSt...

    PP鲁
  • 密码体制如何应对“量子霸权”?

    量子计算是目前全世界范围内的前沿研究热点,并可能正以量子体积每年翻倍的“量子摩尔定律”向前发展。然而,由于量子计算机的强大运算能力,一旦“量子霸权”成为现实,现...

    FB客服
  • Kotlin 轻量级Android开发

    它由Jetbrains创建,而Jetbrains则是诸多强大的工具(如知名的Java IDE IntelliJ IDEA)背后的公司。Kotlin是一门非常简单...

    Yif
  • Hashtable、HashMap、TreeMap 分析

    Hashtable、HashMap、TreeMap 都是最常见的一些 Map 实现,是以键值对的形式存储和操作数据的容器类型。

    Yif
  • Retrofit 解析

    Retrofit在生成Retrofit对象和ServiceMethod对象时候都用到了Builder模式。通过Builder来生成类的实例对象更加优雅,尤其在如...

    Yif
  • Android 线程与消息机制源码分析

    messagequeue是用来存储消息的载体,而lopper是无限循环查找这个载体中是否有消息, handler是创建消息并使用lopper来构建消息循环。 ...

    Yif
  • Flink算子使用方法及实例演示:keyBy、reduce和aggregations

    Flink的Transformation转换主要包括四种:单数据流基本转换、基于Key的分组转换、多数据流转换和数据重分布转换。本文主要介绍基于Key的分组转换...

    PP鲁

扫码关注云+社区

领取腾讯云代金券