比BERT模型参数小18倍,性能还超越了它。
这就是谷歌前不久发布的轻量级BERT模型——ALBERT。
不仅如此,还横扫各大“性能榜”,在SQuAD和RACE测试上创造了新的SOTA。
而最近,谷歌开源了中文版本和Version 2,项目还登上了GitHub热榜第二。
在这个版本中,“no dropout”、“additional training data”、“long training time”策略将应用到所有的模型。
与初代ALBERT性能相比结果如下。
从性能的比较来说,对于ALBERT-base、ALBERT-large和ALBERT-xlarge,v2版要比v1版好得多。
说明采用上述三个策略的重要性。
平均来看,ALBERT-xxlarge比v1略差一些,原因有以下2点:
额外训练了1.5M步(两个模型的唯一区别就是训练1.5M和3M步); 对于v1,在BERT、Roberta和XLnet给出的参数集中做了一点超参数搜索;对于v2,只是采用除RACE之外的V1参数,其中使用的学习率为1e-5和0 ALBERT DR。
总的来说,Albert是BERT的轻量版, 使用减少参数的技术,允许大规模的配置,克服以前的内存限制。
Albert使用了一个单模型设置,在 GLUE 基准测试中的性能:
Albert-xxl使用了一个单模型设置,在SQuaD和RACE基准测试中的性能:
中文版下载地址
Base https://storage.googleapis.com/albert_models/albert_base_zh.tar.gz
Large https://storage.googleapis.com/albert_models/albert_large_zh.tar.gz
XLarge https://storage.googleapis.com/albert_models/albert_xlarge_zh.tar.gz
Xxlarge https://storage.googleapis.com/albert_models/albert_xxlarge_zh.tar.gz
ALBERT v2下载地址
Base [Tar File]: https://storage.googleapis.com/albert_models/albert_base_v2.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_base/2
Large [Tar File]: https://storage.googleapis.com/albert_models/albert_large_v2.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_large/2
XLarge [Tar File]: https://storage.googleapis.com/albert_models/albert_xlarge_v2.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_xlarge/2
Xxlarge [Tar File]: https://storage.googleapis.com/albert_models/albert_xxlarge_v2.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_xxlarge/2
可以使用 TF-Hub 模块:
Base [Tar File]: https://storage.googleapis.com/albert_models/albert_base_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_base/1
Large [Tar File]: https://storage.googleapis.com/albert_models/albert_large_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_large/1
XLarge [Tar File]: https://storage.googleapis.com/albert_models/albert_xlarge_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_xlarge/1
Xxlarge [Tar File]: https://storage.googleapis.com/albert_models/albert_xxlarge_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_xxlarge/1
TF-Hub模块使用示例:
tags = set()
if is_training:
tags.add("train")
albert_module = hub.Module("https://tfhub.dev/google/albert_base/1", tags=tags,
trainable=True)
albert_inputs = dict(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids)
albert_outputs = albert_module(
inputs=albert_inputs,
signature="tokens",
as_dict=True)
# If you want to use the token-level output, use
# albert_outputs["sequence_output"] instead.
output_layer = albert_outputs["pooled_output"]
要预训练ALBERT,可以使用run_pretraining.py:
pip install -r albert/requirements.txt
python -m albert.run_pretraining \
--input_file=... \
--output_dir=... \
--init_checkpoint=... \
--albert_config_file=... \
--do_train \
--do_eval \
--train_batch_size=4096 \
--eval_batch_size=64 \
--max_seq_length=512 \
--max_predictions_per_seq=20 \
--optimizer='lamb' \
--learning_rate=.00176 \
--num_train_steps=125000 \
--num_warmup_steps=3125 \
--save_checkpoints_steps=5000
要对 GLUE 进行微调和评估,可以参阅该项目中的run_glue.sh文件。
底层的用例可能希望直接使用run_classifier.py脚本。
run_classifier.py可对各个 GLUE 基准测试任务进行微调和评估。
比如 MNLI:
pip install -r albert/requirements.txt
python -m albert.run_classifier \
--vocab_file=... \
--data_dir=... \
--output_dir=... \
--init_checkpoint=... \
--albert_config_file=... \
--spm_model_file=... \
--do_train \
--do_eval \
--do_predict \
--do_lower_case \
--max_seq_length=128 \
--optimizer=adamw \
--task_name=MNLI \
--warmup_step=1000 \
--learning_rate=3e-5 \
--train_step=10000 \
--save_checkpoints_steps=100 \
--train_batch_size=128
可以在run_glue.sh中找到每个GLUE任务的default flag。
从TF-Hub模块开始微调模型:
albert_hub_module_handle==https://tfhub.dev/google/albert_base/1
在评估之后,脚本应该报告如下输出:
***** Eval results *****
global_step = ...
loss = ...
masked_lm_accuracy = ...
masked_lm_loss = ...
sentence_order_accuracy = ...
sentence_order_loss = ...
要对 SQuAD v1上的预训练模型进行微调和评估,请使用 run SQuAD v1.py 脚本:
pip install -r albert/requirements.txt
python -m albert.run_squad_v1 \
--albert_config_file=... \
--vocab_file=... \
--output_dir=... \
--train_file=... \
--predict_file=... \
--train_feature_file=... \
--predict_feature_file=... \
--predict_feature_left_file=... \
--init_checkpoint=... \
--spm_model_file=... \
--do_lower_case \
--max_seq_length=384 \
--doc_stride=128 \
--max_query_length=64 \
--do_train=true \
--do_predict=true \
--train_batch_size=48 \
--predict_batch_size=8 \
--learning_rate=5e-5 \
--num_train_epochs=2.0 \
--warmup_proportion=.1 \
--save_checkpoints_steps=5000 \
--n_best_size=20 \
--max_answer_length=30
对于 SQuAD v2,使用 run SQuAD v2.py 脚本:
pip install -r albert/requirements.txt
python -m albert.run_squad_v2 \
--albert_config_file=... \
--vocab_file=... \
--output_dir=... \
--train_file=... \
--predict_file=... \
--train_feature_file=... \
--predict_feature_file=... \
--predict_feature_left_file=... \
--init_checkpoint=... \
--spm_model_file=... \
--do_lower_case \
--max_seq_length=384 \
--doc_stride=128 \
--max_query_length=64 \
--do_train \
--do_predict \
--train_batch_size=48 \
--predict_batch_size=8 \
--learning_rate=5e-5 \
--num_train_epochs=2.0 \
--warmup_proportion=.1 \
--save_checkpoints_steps=5000 \
--n_best_size=20 \
--max_answer_length=30
GitHub项目地址: https://github.com/google-research/ALBERT