专栏首页算法时空《模式识别与智能计算》基于二值数据的贝叶斯分类实现

《模式识别与智能计算》基于二值数据的贝叶斯分类实现

算法流程
  1. 将数据二值化
  2. 计算每类数字的先验概率
  3. 计算条件概率
  4. 计算后验概率 (具体计算过程请见书上77页)
算法实现

贝叶斯算法

def bayeserzhi(x_train,y_train,sample):
    """
    :function 基于二值数据的贝叶斯分类器
    :param x_train: 训练集 M*N  M为样本个数 N为特征个数
    :param y_train: 训练集标签 1*M
    :param sample: 待识别样品
    :return: 返回判断类别
    """
    #后验概率
    pwx = []

    target = np.unique(y_train)

    spit = 0.5 * (np.max(x_train) - np.min(x_train))
    train = np.where(x_train > spit, 1, 0)
    sample = np.where(sample > spit, 1, 0)

    for i in target:
        trainIndex = (([j for j, y in enumerate(y_train) if y == i]))
        trainNum = len(trainIndex)
        # 计算先验概率
        pw = trainNum/x_train.shape[0]
        # 计算类条件概率
        p = (np.sum(train[trainIndex],axis=0)+1)/(trainNum+2)
        pxw = 1
        for j in range(train.shape[1]):
            if sample[j]:
                pxw *= p[j]
            else:
                pxw *= (1-p[j])
        #计算pxw*pw
        pwx.append(pxw*pw)
    pwx = pwx/np.sum(pwx)
    maxId = np.argmax(pwx)
    label = target[maxId]
    return label

划分数据集

def train_test_split(x,y,ratio = 3):
    """
    :function: 对数据集划分为训练集、测试集
    :param x: m*n维 m表示数据个数 n表示特征个数
    :param y: 标签
    :param ratio: 产生比例 train:test = 3:1(默认比例)
    :return: x_train y_train  x_test y_test
    """
    n_samples , n_train = x.shape[0] , int(x.shape[0]*(ratio)/(1+ratio))
    train_id = random.sample(range(0,n_samples),n_train)
    x_train = x[train_id,:]
    y_train = y[train_id]
    x_test = np.delete(x,train_id,axis = 0)
    y_test = np.delete(y,train_id,axis = 0)
    return x_train,y_train,x_test,y_test
测试代码
from sklearn import datasets
from Include.chapter4 import function
import numpy as np

#读取数据
digits = datasets.load_digits()
x , y = digits.data,digits.target

#划分数据集
x_train, y_train, x_test, y_test = function.train_test_split(x,y)
testId = np.random.randint(0, x_test.shape[0])
sample = x_test[testId, :]

#模板匹配
ans = function.bayeserzhi(x_train,y_train,sample)
y_test[testId]
print("预测的数字类型",ans)
print("真实的数字类型",y_test[testId])
算法结果
预测的数字类型 0
真实的数字类型 0

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 《模式识别与智能计算》模板匹配法

    模板匹配法说白就是特征一一对应,将数据每个特征相差加起来,然后总的特征值最小的就是相似度最大的

    用户4492257
  • 《模式识别与智能计算》基于类中心的欧式距离法分类

    算法过程: 1 选取某一样本 2 计算类中心 3 计算样本与每一类的类中心距离,这里采用欧式距离 4 循环计算待测样品和训练集中各类中心距离找出距离待测...

    用户4492257
  • 《模式识别与智能计算》基于类中心的欧式距离分类法

    用户4492257
  • 《模式识别与智能计算》基于类中心的欧式距离分类法

    用户4492257
  • 《模式识别与智能计算》基于类中心的欧式距离法分类

    算法过程: 1 选取某一样本 2 计算类中心 3 计算样本与每一类的类中心距离,这里采用欧式距离 4 循环计算待测样品和训练集中各类中心距离找出距离待测...

    用户4492257
  • 《模式识别与智能计算》基于PCA的模板匹配法

    用户4492257
  • 《模式识别与智能计算》模板匹配法

    模板匹配法说白就是特征一一对应,将数据每个特征相差加起来,然后总的特征值最小的就是相似度最大的

    用户4492257
  • 《模式识别与智能计算》夹角余弦距离分类

    用户4492257
  • 《模式识别与智能计算》二值化的夹角余弦距离法分类

    用户4492257
  • 从0到1走进 Kaggle

    用户1737318

扫码关注云+社区

领取腾讯云代金券