专栏首页区块链大本营集五福,我用 Python

集五福,我用 Python

作者 | Crossin先生

编辑 | Jane

来源 | Crossin的编程教室(ID:crossincode)

【导读】你的五福集齐了吗?作为一名技术人,我们是不是可以用技术方法快速实现呢?今天,我们就为大家推荐四种新鲜的方法,生成风格不同又数量庞大的「福」字,让大家不用满世界找福字,动动手指即可。

作为一个没有寒假、不用回老家也没有年终奖的人,让我发现马上就要过年的现象是:各个群里面又开始集五福了!

五福卡我是没法帮你搞出来。这种 APP 的计算都是放在后端(服务器上),哪怕你完全破解了自己手机上支付宝,该还花呗也还是得还。

不过,我倒是可以帮你生成一些福字,直接拿去扫一扫,省得满世界地找了。没准也能扫出个全家福呢!

以下这些福字,作者 Crossin 都介绍过相关的方法,并且全部都是通过 Python 语言及相关库所生成。好了,不多说了,接下来,我们就赶紧来看看这些方法吧。

一、头像福

这个福字是用微信好友的头像所组成。之前元宵节的时候用这个方法第一次做了尝试,涉及的原理并不复杂,使用 itchat 和 PIL 库,详细方法和代码:

  • 【第一步】

首先是点阵字的概念:点阵字体是把每一个字符都分成 n * n 个点,然后用每个点的虚实来表示字符的轮廓。点阵字体也叫位图字体,其中每个字形都以一组二维像素信息表示。

汉字那么多,总不能每个字都去自己设计点阵吧?别担心,有现成的点阵字库可以直接使用:HZK16字库。HZK即汉字库的首字母缩写,HZK16字库是符合GB2312标准的16×16点阵字库,支持的汉字有6763个(但可惜不支持英文和数字),每个汉字模型需要16×16一共需要256个点来显示。

这样思路就出来了:我们自己输入汉字,根据字符串中汉字字符编码,去HZK16字库中获取点阵信息,拿到信息后根据16*16点阵每个点的数据,print 出不同字符。

#初始化16*16的点阵位置,每个汉字需要16*16=256个点来表示
rect_list = [] * 16
for i in range(16):
    rect_list.append([] * 16)
#拿“赞”字来演示
text = "赞"
#获取中文的编码
gb2312 = text.encode('gb2312')
hex_str = binascii.b2a_hex(gb2312)
result = str(hex_str, encoding='utf-8')
#根据编码计算“赞”在汉字库中的位置
area = eval('0x' + result[:2]) - 0xA0
index = eval('0x' + result[2:]) - 0xA0
offset = (94 * (area-1) + (index-1)) * 32
font_rect = None
#读取HZK16汉字库文件中“赞”字数据
with open("HZK16", "rb") as f:
    f.seek(offset)
    font_rect = f.read(32)
#根据读取到HZK中数据给我们的16*16点阵赋值
for k in range(len(font_rect) // 2):
    row_list = rect_list[k]
    for j in range(2):
        for i in range(8):
            asc = font_rect[k * 2 + j]
            flag = asc & KEYS[i]
            row_list.append(flag)
#根据获取到的16*16点阵信息,打印到控制台
for row in rect_list:
    for i in row:
        if i:
            #前景字符(即用来表示汉字笔画的输出字符)
            print('0', end=' ')
        else:
            #背景字符(即用来表示背景的输出字符)
            print('.', end=' ')
    print()
  • 【第二步】

解决了输出字符的问题,接下来就考虑,如何把这些点换成微信好友头像呢?

我们通过 itchat 这个开源的微信个人号接口来获取微信好友头像图片。

#通过二维码登录微信网页版
itchat.auto_login()
#获取微信好友信息列表
friendList = itchat.get_friends(update=True)
#读取好友头像
for friend in friendList:
    friend['head_img'] = itchat.get_head_img(userName=friend['UserName'])
    friend['head_img_name'] = "%s.jpg" % friend['UserName']
    #写入文件
    with open(friend['head_img_name'],'wb') as f:
        f.write(friend['head_img'])
  • 【第三步】

有了头像之后,我们通过 PIL (Python Image Library,python的第三方图像处理库) 根据汉字点阵信息拼接头像图片。核心代码片段:

#新建画布,16*16点阵,每个图片边长100
canvas = Image.new('RGB', (1600, 1600), '#FFFFFF')
n = 0
for i in range(16*16):
    #点阵信息为1,即代表此处要显示头像来组字
    if item[i] == "1":
        # 打开图片
        img = Image.open(imgList[n])
        # 缩小图片
        img = img.resize((100, 100), Image.ANTIALIAS)
        # 拼接图片
        canvas.paste(img, ((i % 16) * 100, (i // 16) * 100))
        n += 1

综合以上三个步骤,即可用微信好友头像组成你想要的文字了。

如果你嫌弃这 16x16 的字库效果,也可以通过对图片进行二值化处理,以获取更精致的点阵信息来成字符图。比如上面的“福”字,其点阵信息就是我对福字图片处理得到的,最终展示的效果也更美观大方,就像上面的图那样。

二、文字福

这个福字是将福字图片转成文字符号显示而组成,使用 opencv-python 库,详细方法及代码:

# coding: utf8
import cv2 as cv
import os
import time
# 替换字符列表
ascii_char = list(r"$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^`'. ")
char_len = len(ascii_char)
# 加载视频
cap = cv.VideoCapture('video.mp4')
while True:
    # 读取视频每一帧
    hasFrame, frame = cap.read()
    if not hasFrame:
        break
    # 视频长宽
    width = frame.shape[0]
    height = frame.shape[1]
    # 转灰度图
    img_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    # 缩小图片并调整长宽比
    img_resize = cv.resize(img_gray, (int(width / 10), int(height / 10)))

    text = ''
    # 遍历图片中的像素
    for row in img_resize:
        for pixel in row:
            # 根据像素值,选取对应的字符
            text += ascii_char[int(pixel / 256 * char_len)]
        text += '\n'
    # 清屏
    os.system('cls')  # mac是'clear'
    # 输出生成的字符方阵
    print(text)
    # 适当暂停一下
    time.sleep(0.03)

代码不长,稍微解释下其中几处:

1、ascii_char 这个字符序列并不是必须这样,只要大致上满足其中的字符看起来从深到浅即可,字符越多越准确,效果就越好。

2、读取视频使用了 opencv-python,并直接用它提供的方法转了灰度图。

3、resize 这一步比较重要,因为有的视频分辨率很高,直接一个像素转一个字符的话量太大,所以先缩小图片。另一个原因是字符一般都不是正方形,所以在图片长宽比上要做一定的调整,这样最终效果比较好。(实际中要根据你自己控制台中的字体效果来调整缩放比例)

4、ascii_char[int(pixel / 256 * char_len)] 是整个转换的核心,因为一个像素的颜色范围是 0~255,通过 pixel / 256 * char_len 可以将一个像素值对应于字符序列中灰度相当的字符。

5、关于输出,有几个值得注意的点:输出一帧前需要清屏,不同平台命令有区别;时间间隔、控制台的字体大小、缩放比例都要根据实际情况作调整;如果计算时间过长、刷新太慢而屏幕闪烁,可以考虑进一步缩小图片,或者先将所以帧转换完毕后再统一输出。

这段代码,看起来没啥实际用处,而且有些反潮流,因为现如今大家看视频都追求更高分辨率的超清画质,而我们这个,是一个“超不清”的视频播放器:在控制台里播放视频,用字符来表示画面。

不过我觉得它至少可以有三个作用:1.用来练习视频和图像处理的编程开发;2.在没有图形界面的服务器上播放视频(虽然效果不咋地);3.作为一种独特的艺术风格化处理

程序的原理其实很简单,关键是你要理解计算机中一张图像的组成:一堆像素点。我们平常说的 1920*1080 之类的分辨率,也就是指这个像素点的多少。我们想做成字符画,也就是考虑如何用不同的字符来表示一个像素。

通常一个像素点由3个0~255的值表示,分别表示红、绿、蓝三种颜色值,值越大表示颜色越深。但字符画是没有颜色的,所以需要将图像转成灰度图,这样就可以跟一组从深到浅的字符形成一种对应关系。比如深的点就是 @,浅色的点就是 .。

一幅图像全部转成字符序列后,就可以直接在控制台输出了。对于一个视频来说,只需要将每一帧都转换后输出,并按照一定的时间间隔清屏、输出下一帧,即可达到我们的需要的效果。

转换后的效果:

三、名画福

如果左边跟着梵高画个福,再跟着毕加索右边画个福,会是什么样的效果?这两个福字分别通过梵高的《星空》和毕加索的《缪斯》风格生成,这里我们选择使用 opencv-python 中的 DNN(深度神经网络)。

这种功能叫做“图像风格迁移”,几乎都是基于 CVPR 2015 的论文《A Neural Algorithm of Artistic Style》和 ECCV 2016 的论文《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》中提出的算法,以及后续相关研究的基础上开发出来的。

通俗来讲,就是借助于神经网络,预先将名画中的风格训练成出模型,在将其应用在不同的照片上,生成新的风格化图像。

来自《A Neural Algorithm of Artistic Style》

而因为神经网络在计算机视觉方面的应用越来越广,著名的视觉开发库 OpenCV 在 3.3 版本中正式引入 DNN(深度神经网络),支持 Caffe、TensorFlow、Torch/PyTorch 等主流框架的模型,可用以实现图像的识别、检测、分类、分割、着色等功能。

在 OpenCV 的 Sample 代码中就有图像风格迁移的 Python 示例,是基于 ECCV 2016 论文中的网络模型实现。所以,即使作为人工智能的菜鸟,也可以拿别人训练好的模型来玩一玩,体会下神经网络的奇妙。

OpenCV 官方代码地址:

https://github.com/opencv/opencv/blob/3.4.0/samples/dnn/fast_neural_style.py

目录下通过执行命令运行代码:

python fast_neural_style.py --model starry_night.t7

model 参数是提供预先训练好的模型文件路径,OpenCV 没有提供下载,但给出的参考项目 https://github.com/jcjohnson/fast-neural-style 中可以找到

其他可设置参数有:

  • input 可以指定原始图片/视频,如果不提供就默认使用摄像头实时采集。
  • width、height,调整处理图像的大小,设置小一点可以提高计算速度。在我自己的电脑上,300x200 的转换视频可以达到 15 帧/秒。
  • median_filter 中值滤波的窗口大小,用来对结果图像进行平滑处理,这个对结果影响不大。

执行后的效果(取自 jcjohnson/fast-neural-style):

原始图像

ECCV16 models

instance_norm models

核心代码其实很短,就是 加载模型 -> 读取图片 -> 进行计算 -> 输出图片,我在官方示例基础上进一步简化了一下:

import cv2
# 加载模型
net = cv2.dnn.readNetFromTorch('the_scream.t7')
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV);
# 读取图片
image = cv2.imread('test.jpg')
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 1.0, (w, h), (103.939, 116.779, 123.680), swapRB=False, crop=False)
# 进行计算
net.setInput(blob)
out = net.forward()
out = out.reshape(3, out.shape[2], out.shape[3])
out[0] += 103.939
out[1] += 116.779
out[2] += 123.68
out /= 255
out = out.transpose(1, 2, 0)
# 输出图片
cv2.imshow('Styled image', out)
cv2.waitKey(0)

四、变形福

如何用 python 的图像处理功能,把一幅“福”字图片转出 5 种不同的效果?在接下来使用 opencv-python的几个方法教程中,总有一款适合你,方法及代码:

  • 【第1步】

读取图片及展示代码:

import cv2
from matplotlib import pyplot as plt
img = cv2.imread('fu.png')
# 转换颜色模式,显示原图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.show()

因为 OpenCV 和 matplotlib 的颜色模式不一样,所以需要做一次转换,如果是直接通过 cv2 展示和保存图片则不需要。

  • 【第2步】

上面的效果分别用到了以下功能:

1、灰度福

这里没有选择直接将图片转出灰度图,因为这样会导致福字不明显。而是通过将红、绿、蓝三通道分离后,选择色差最大的红色通道。

r,g,b = cv2.split(img)

2、轮廓福

使用了 OpenCV 自带的图像轮廓提取功能。为了更好的效果,这里对红色通道进行二值化后,再查找轮廓。

_, img_bin = cv2.threshold(r, 50, 255, cv2.THRESH_BINARY)
_, contours, _ = cv2.findContours(img_bin, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img_cont = np.zeros(img_bin.shape, np.uint8)    
cv2.drawContours(img_cont, contours, -1, 255, 3)

3、反色福

发色的实现是将每个像素值 x 转成 255-x。如果遍历像素计算会比较慢,于是用了一个小技巧:转成 numpy 的 ndarray 再进行矩阵运算。

img_i = np.asarray(img)
img_i = 255 - img_i

4、膨胀福

这里其实是“图像腐蚀”操作(与“图像膨胀”操作相反)。因为在我们选取的红色通道中,白色是背景,黑色才是福字,所以对白色的“腐蚀”也就是对黑色的“膨胀”。这也是 OpenCV 的内置功能。做完这一步,又对图像进行了切割,直接通过列表的切片操作实现。

kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(25, 25))
eroded = cv2.erode(r, kernel)
size = img.shape
eroded = eroded[int(size[1]*0.15):int(size[1]*0.7),int(size[0]*0.2):int(size[0]*0.85)]

5、福到了

OpenCV 提供了翻转操作,第二个参数是旋转轴的选取,你可以试试 0 和 1 的效果。

img_r = cv2.flip(img, -1)

经验证,以上福字皆可扫。本人已集齐

最后,再送上一张阿里某马姓员工写的福字,据说扫它能抽到稀有福!

本文分享自微信公众号 - 区块链大本营(blockchain_camp)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-01-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 被V神点赞, 我是如何用五子棋打败以太坊排名最高的应用的? |人物志

    董沫,Celer Network创始人兼CEO,湾区创业者,圈内人往往亲切地称他为「老董」。

    区块链大本营
  • 一文读懂分片基础原理, 数据分片, 跨分片交易, 区块链分片和缩放究竟是什么鬼?

    以太坊是所有区块链中一直与分片概念同步的底层平台,想要理解为什么以太坊开发者社区想要实现分片,重点是要理解分片是什么,以及这个解决方案为何如此有吸引力。

    区块链大本营
  • 我研究了V神的黄皮书,发现EVM里竟然藏着函数手册,虐哭你别怪我

    在以太坊智能合约的一个调用中,提供给它的交易数据被视为”输入”,输入的纯粹性对智能合约有深远的影响。本文试图以一个智能合约为例,通过对其「纯粹性」(Purity...

    区块链大本营
  • 【Python3+OpenCV】实现图像处理—基本操作篇

    OpenCV是一个C++库,目前流行的计算机视觉编程库,用于实时处理计算机视觉方面的问题,它涵盖了很多计算机视觉领域的模块。在Python中常使用OpenCV库...

    潘永斌
  • OpenCV 系列教程2 - Core 组件

    若是单通道的像素,像素有 256(0-255)个值,若是三通道,则颜色数就更多(一千六百多万种),如此多的颜色进行处理,会对算法的性能造成影响。这些颜色中,有代...

    机器视觉CV
  • Python OpenCV4趣味应用系列(七)---画龙点睛轮廓点绘制

    核心思路,第一个for循环遍历每个轮廓,第二个for循环遍历第i个轮廓上的每个点,完成,C++代码思路也是类似,只不过类型都是vector。

    Color Space
  • ubuntu下C++如何调用python程序,gdb调试C++代码

    Linux下gdb调试C++代码:http://jingyan.baidu.com/article/acf728fd464984f8e410a369.html ...

    MachineLP
  • JavaScript判断页面是否已经加载完毕

      在做针对CheckBox框点击事件的时候,发现点击以后有时候会报错,但是是生成的JavaScript的代码的内部错误,无法判断到底是什么地方有问题。就一直在...

    aehyok
  • Android Loader 机制,让你的数据加载更加轻松

    在 Android 中,任何耗时的操作都不能放在 UI 线程中,所以耗时的操作都需要使用异步加载来实现。其实,加载耗时数据的常用方式其实也挺多的,就让我们来看一...

    developerHaoz
  • 2017年高频率的互联网校园招聘面试题

    参加了2017年校招,面试了阿里、百度、腾讯、滴滴、美团、网易、去哪儿等公司,个人是客户端 Android 方向,总结了面试过程中频率出现较高的题目,希望对大家...

    哲洛不闹

扫码关注云+社区

领取腾讯云代金券