1. 什么是regulator?
regulator翻译为"调节器",分为voltage regulator(电压调节器)和current(电流调节器)。一般电源管理芯片(Power Management IC)中会包含一个甚至多个regulator。
2. regulator有什么作用?
通常的作用是给电子设备供电。大多数regulator可以启用(enable)和禁用(disable)其输出,同时也可以控制其输出电压(voltage)和电流(current)。
从上图可以看出,input power会经过 regulator 转化为output power,regulator会做如下的约束:
- Voltage control: 输入5V输出1.8V
- Current limiting: 电流的输出最大为20MA
- Power switch: 可以控制电压enable/disable
1. 如果一个系统只有一个regulator,而且只对一个设备控制的话,完全没必要使用linux regulator framework机制。但是如果一个系统几个甚至十几个regulator,每个regulator之间还存在级连关系,这时候就需要Linux regulator framework。
2. 如果一个regulator控制多个设备,而每个设备的电压或电流需求方式不同,linux regulator framework会怎么管理这些设备?
3. 有些设备只需要enable/disable电源即可,而有些设备在运行的过程中需要动态的改变voltage或者current,Linux regulator Framework会如何处理这些问题?
4. regulator的错误配置可能也会对硬件有非常严重的后果,所以需要小心设计regulaor,同时也要规范的使用regulator。
1. Linux Regulator Framework设计出主要是提供一个标准的内核接口来控制电压和电流调节器。目的是允许系统动态控制regulator power输出以节省能源延长电池寿命。这适用于voltage regulator和current regulator(其中电压和电流都是可控的)。
2. Linux Regulator Framework分为四个部分,分别是machine,regulator,consumer,sys-class-regulator。
machine可以理解为regulator在板级的硬件配置,使用regulator_init_data结构体代表regulator板级的配置。
struct regulator_init_data {
const char *supply_regulator; /* or NULL for system supply */
struct regulation_constraints constraints;
int num_consumer_supplies;
struct regulator_consumer_supply *consumer_supplies;
/* optional regulator machine specific init */
int (*regulator_init)(void *driver_data);
void *driver_data; /* core does not touch this */
};
.supply_regulator: regulator的parent。用于级联regulator使用。
.constraints: 此regulator的约束,比如输出电压范围,输出电流范围等。
.num_consumer_supplies: 此regulator提供的consumer的个数,也就是控制外设的个数。
.consumer_supplies: 使用此结构确定regulator和consumer之间的联系。
.regulator_init: regulator注册时候的回调函数。
.driver_data: regulator_init回调函数的参数。
而regulator板级的配置,也可以称为约束,定义在regulation_constraints结构中。
struct regulation_constraints {
const char *name;
/* voltage output range (inclusive) - for voltage control */
int min_uV;
int max_uV;
int uV_offset;
/* current output range (inclusive) - for current control */
int min_uA;
int max_uA;
/* valid regulator operating modes for this machine */
unsigned int valid_modes_mask;
/* valid operations for regulator on this machine */
unsigned int valid_ops_mask;
/* regulator input voltage - only if supply is another regulator */
int input_uV;
/* regulator suspend states for global PMIC STANDBY/HIBERNATE */
struct regulator_state state_disk;
struct regulator_state state_mem;
struct regulator_state state_standby;
suspend_state_t initial_state; /* suspend state to set at init */
/* mode to set on startup */
unsigned int initial_mode;
unsigned int ramp_delay;
unsigned int enable_time;
/* constraint flags */
unsigned always_on:1; /* regulator never off when system is on */
unsigned boot_on:1; /* bootloader/firmware enabled regulator */
unsigned apply_uV:1; /* apply uV constraint if min == max */
unsigned ramp_disable:1; /* disable ramp delay */
};
.name: 描述该约束的名字。
.min_uV/max_uV: 最小/最大的输出电压。
.uV_offset: consumer看到的电源和实际电源之间的偏移值,用于电源补偿。
.min_uA/max_uA: 最小/最大的输出电流。
.valid_modes_mask: 该regulator支持的操作模式。
#define REGULATOR_MODE_FAST 0x1 //快速改变模式 #define REGULATOR_MODE_NORMAL 0x2 //正常模式,大多数驱动都使用这种模式 #define REGULATOR_MODE_IDLE 0x4 //设备在idle状态,regulator给设备提供服务 #define REGULATOR_MODE_STANDBY 0x8 //设备在standby状态,regulator给设备提供服务
.valid_ops_mask: 该regulator支持的操作。
#define REGULATOR_CHANGE_VOLTAGE 0x1 //该regulator可以改变电压 #define REGULATOR_CHANGE_CURRENT 0x2 //该regulator可以改变电流 #define REGULATOR_CHANGE_MODE 0x4 //该regulator可以改变mode #define REGULATOR_CHANGE_STATUS 0x8 //该regulator可以改变状态,也就是enable/disable power #define REGULATOR_CHANGE_DRMS 0x10 //该regulator可以动态该变mode #define REGULATOR_CHANGE_BYPASS 0x20 //该regulator支持bypass mode .input_uV: 表示该regulator的input是另一个regulator。
.state_disk/state_mem/state_standby: 代表该regulator的各种suspend状态。
.always_on: 是否在系统启动后一直使能。
.boot_on: 是否在boot阶段使能。 .apply_uV: 当min_uV=max_uV的时候时使用。
.ramp_delay: 改变电压到电源稳定后时间。因为硬件原因,改变电源后不能立刻就成功,其中需要有一定的延迟。
.enable_time: regulator的使能时间。
举例说明:参考内核中s5pv210-goni.dts片段
buck3_reg: BUCK3 {
regulator-name = "VCC_1.8V";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
regulator-always-on;
regulator-boot-on;
};
regulator-name对应struct regulation_constraints中的name
regulator-min-microvolt对应struct regulation_constraints中的min_uV
regulator-max-microvolt对应struct regulation_constraints中的max_uV
regulator-always-on对应struct regulation_constraints中的always_on
regulator-boot-on对应struct regulation_constraints中的boot_on
regulator可以理解为regulator driver。主要作用有注册自己的regulator服务到regulator core framework中,给consumer提供服务。regulator driver通过regulator_register函数注册regulator operation到regulator core。其中第一个参数struct regulator_desc代表静态的regulator配置,所谓静态就是不再会改变的配置。第二个参数代表regulator的动态配置信息。
struct regulator_desc {
const char *name;
const char *supply_name;
const char *of_match;
const char *regulators_node;
int id;
bool continuous_voltage_range;
unsigned n_voltages;
const struct regulator_ops *ops;
int irq;
enum regulator_type type;
struct module *owner;
unsigned int min_uV;
unsigned int uV_step;
unsigned int linear_min_sel;
int fixed_uV;
unsigned int ramp_delay;
const struct regulator_linear_range *linear_ranges;
int n_linear_ranges;
const unsigned int *volt_table;
unsigned int vsel_reg;
unsigned int vsel_mask;
unsigned int apply_reg;
unsigned int apply_bit;
unsigned int enable_reg;
unsigned int enable_mask;
unsigned int enable_val;
unsigned int disable_val;
bool enable_is_inverted;
unsigned int bypass_reg;
unsigned int bypass_mask;
unsigned int bypass_val_on;
unsigned int bypass_val_off;
unsigned int enable_time;
unsigned int off_on_delay;
};
.name: 该regulator的名字。
.supply_name: 该regulator parent的name,在级联时使用。
.of_match: 在dt中指定的name。
.regulators_node: 定义在dt中的regulator name.
.id: 用于标识该regulator,也可以标识系统有多少个regulator.
.continuous_voltage_range: 表示regulator是否可以在电压约束范围内连续输出电压。
.n_voltages: 通过ops.list_voltage函数获取可用的电压数量。
.ops: regulator的操作函数集合。
.irq: 该regulator的中断号。
.type: 代表当前regulator的类型。
.min_uV: 如果是线性mapp的话,使用最低的selector获取的电压。
.uV_step: 每个selector下电压增加step。
.linear_min_sel: 线性mapp下最小的selector。
.fixed_uV: 固定电压。
.ramp_delay: 电压改变之后需要多久时间稳定下来。
.linear_rangs: 电压的可能范围的常数表。
.n_linear_rangs: 电压范围常数表的个数。
.volt_table: 电压的mapp表。
.enable_time: regulator初始化所需要的时间。
.off_on_delay: 重新使能regulator的保护时间。
其中struct regulator_ops代表了regulator提供的函数操作集合。
struct regulator_ops {
/* enumerate supported voltages */
int (*list_voltage) (struct regulator_dev *, unsigned selector);
/* get/set regulator voltage */
int (*set_voltage) (struct regulator_dev *, int min_uV, int max_uV,
unsigned *selector);
int (*map_voltage)(struct regulator_dev *, int min_uV, int max_uV);
int (*set_voltage_sel) (struct regulator_dev *, unsigned selector);
int (*get_voltage) (struct regulator_dev *);
int (*get_voltage_sel) (struct regulator_dev *);
/* get/set regulator current */
int (*set_current_limit) (struct regulator_dev *,
int min_uA, int max_uA);
int (*get_current_limit) (struct regulator_dev *);
/* enable/disable regulator */
int (*enable) (struct regulator_dev *);
int (*disable) (struct regulator_dev *);
int (*is_enabled) (struct regulator_dev *);
/* get/set regulator operating mode (defined in consumer.h) */
int (*set_mode) (struct regulator_dev *, unsigned int mode);
unsigned int (*get_mode) (struct regulator_dev *);
/* Time taken to enable or set voltage on the regulator */
int (*enable_time) (struct regulator_dev *);
int (*set_ramp_delay) (struct regulator_dev *, int ramp_delay);
int (*set_voltage_time_sel) (struct regulator_dev *,
unsigned int old_selector,
unsigned int new_selector);
/* report regulator status ... most other accessors report
* control inputs, this reports results of combining inputs
* from Linux (and other sources) with the actual load.
* returns REGULATOR_STATUS_* or negative errno.
*/
int (*get_status)(struct regulator_dev *);
/* get most efficient regulator operating mode for load */
unsigned int (*get_optimum_mode) (struct regulator_dev *, int input_uV,
int output_uV, int load_uA);
/* control and report on bypass mode */
int (*set_bypass)(struct regulator_dev *dev, bool enable);
int (*get_bypass)(struct regulator_dev *dev, bool *enable);
/* the operations below are for configuration of regulator state when
* its parent PMIC enters a global STANDBY/HIBERNATE state */
/* set regulator suspend voltage */
int (*set_suspend_voltage) (struct regulator_dev *, int uV);
/* enable/disable regulator in suspend state */
int (*set_suspend_enable) (struct regulator_dev *);
int (*set_suspend_disable) (struct regulator_dev *);
/* set regulator suspend operating mode (defined in consumer.h) */
int (*set_suspend_mode) (struct regulator_dev *, unsigned int mode);
};
此结构体的注释写的非常清楚,这里就不做详细的解释。
struct regulator_config代表regulator的动态配置信息。此结构体如下:
struct regulator_config {
struct device *dev;
const struct regulator_init_data *init_data;
void *driver_data;
struct device_node *of_node;
struct regmap *regmap;
int ena_gpio;
unsigned int ena_gpio_invert:1;
unsigned int ena_gpio_flags;
};
.dev: struct device指针。
.init_data: 板级的相关初始化信息,通过解析DT,保存在此。
.dirver_data: 私有数据。
.of_node: dt相关的node。
.regmap: regulator register map。
当调用regulator_register函数之后,传入静态和动态参数之后,就会返回一个regulator_dev结构。此结构可以认为是regulator设备的一个抽象描述。
struct regulator_dev {
const struct regulator_desc *desc;
int exclusive;
u32 use_count;
u32 open_count;
u32 bypass_count;
/* lists we belong to */
struct list_head list; /* list of all regulators */
/* lists we own */
struct list_head consumer_list; /* consumers we supply */
struct blocking_notifier_head notifier;
struct mutex mutex; /* consumer lock */
struct module *owner;
struct device dev;
struct regulation_constraints *constraints;
struct regulator *supply; /* for tree */
struct regmap *regmap;
struct delayed_work disable_work;
int deferred_disables;
void *reg_data; /* regulator_dev data */
struct dentry *debugfs;
struct regulator_enable_gpio *ena_pin;
unsigned int ena_gpio_state:1;
/* time when this regulator was disabled last time */
unsigned long last_off_jiffy;
};
.list: 所有的regulator链表。
.consumer: 此regulator下所有的consumer。
.notifier: 此regulator的通知链,用于给consumer通知event。
.supply: 该regulator的supply,级联时候使用。
.disable_work: 该regulator的延迟工作,用于延迟disable regulator。
.use_count/open_count:代表该regulator的使用计数。
.exclusive: 该regulator是否是唯一的标志。
consumer可以理解为regulator提供服务的对象。比如LCD使用regulator管理自己,就必须使用regulator core提供的regulator相关接口函数。regulator_get()/regulator_put()函数。
详细可以看Documentation/power/regulator/consumer.txt文档。
regulator core framework通过sysfs文件系统导出了一些"voltage/current/opmode"相关的信息,此将很有帮忙监控设备的功耗使用情况。
详细信息可以看Documentation/ABI/testing/sysfs-class-regulator文档。
regulator = regulator_get(dev, "Vcc");
regulator_put(regulator);
int regulator_enable(regulator);
int regulator_disable(regulator);
int regulator_force_disable(regulator);
int regulator_set_voltage(regulator, min_uV, max_uV);
int regulator_get_voltage(regulator);
int regulator_set_current_limit(regulator, min_uA, max_uA);
int regulator_get_current_limit(regulator);
int regulator_set_optimum_mode(struct regulator *regulator, int load_uA);
int regulator_set_mode(struct regulator *regulator, unsigned int mode);
unsigned int regulator_get_mode(struct regulator *regulator);
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
const struct regulator_config *config);
void regulator_unregister(struct regulator_dev *rdev);
int regulator_notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data);
本小节就先到这里,下节通过一个实际的例子对regulator再有一个更深的认识。