前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Android lowmemorykiller分析

Android lowmemorykiller分析

作者头像
233333
发布2020-04-01 17:17:54
1.3K0
发布2020-04-01 17:17:54
举报

1.概述

Android底层还是基于Linux,在Linux中低内存是会有oom killer去杀掉一些进程去释放内存,而Android中的lowmemorykiller就是在此基础上做了一些调整来的。因为手机上的内存毕竟比较有限,而Android中APP在不使用之后并不是马上被杀掉,虽然上层ActivityManagerService中也有很多关于进程的调度以及杀进程的手段,但是毕竟还需要考虑手机剩余内存的实际情况,

lowmemorykiller的作用就是当内存比较紧张的时候去及时杀掉一些ActivityManagerService还没来得及杀掉但是对用户来说不那么重要的进程,回收一些内存,保证手机的正常运行。

lowmemkiller中会涉及到几个重要的概念:

/sys/module/lowmemorykiller/parameters/minfree:里面是以”,”分割的一组数,每个数字代表一个内存级别

/sys/module/lowmemorykiller/parameters/adj:对应上面的一组数,每个数组代表一个进程优先级级别

举个例子:

/sys/module/lowmemorykiller/parameters/minfree:18432,23040,27648,32256,55296,80640

/sys/module/lowmemorykiller/parameters/adj:0,100,200,300,900,906

代表的意思:两组数一一对应,当手机内存低于80640时,就去杀掉优先级906以及以上级别的进程,当内存低于55296时,就去杀掉优先级900以及以上的进程。

对每个进程来说:

/proc/pid/oom_adj:代表当前进程的优先级,这个优先级是kernel中的优先级,这个优先级与上层的优先级之间有一个换算,文章最后会提一下。

/proc/pid/oom_score_adj:上层优先级,跟ProcessList中的优先级对应

2.init进程lmkd

代码位置:platform/system/core/lmkd/

ProcessList中定义有进程的优先级,越重要的进程的优先级越低,前台APP的优先级为0,系统APP的优先级一般都是负值,所以一般进程管理以及杀进程都是针对与上层的APP来说的,而这些进程的优先级调整都在AMS里面,AMS根据进程中的组件的状态去不断的计算每个进程的优先级,计算之后,会及时更新到对应进程的文件节点中,而这个对文件节点的更新并不是它完成的,而是lmkd,他们之间通过socket通信。

lmkd在手机中是一个常驻进程,用来处理上层ActivityManager在进行updateOomAdj之后,通过socket与lmkd进行通信,更新进程的优先级,如果必要则杀掉进程释放内存。lmkd是在init进程启动的时候启动的,在lmkd中有定义lmkd.rc:

代码语言:javascript
复制
service lmkd /system/bin/lmkd
    class core
    group root readproc
    critical
    socket lmkd seqpacket 0660 system system
    writepid /dev/cpuset/system-background/tasks

上层AMS跟lmkd通信主要分为三种command,每种command代表一种数据控制方式,在ProcessList以及lmkd中都有定义:

代码语言:javascript
复制
LMK_TARGET:更新/sys/module/lowmemorykiller/parameters/中的minfree以及adj
LMK_PROCPRIO:更新指定进程的优先级,也就是oom_score_adj
LMK_PROCREMOVE:移除进程

在开始介绍lmkd的处理逻辑之前,lmkd.c中有几个重要的变量与数据结构提前说明一下:

代码语言:javascript
复制
// 内存级别限额
#define INKERNEL_MINFREE_PATH "/sys/module/lowmemorykiller/parameters/minfree"
// 不同级别内存对应要杀的的优先级
#define INKERNEL_ADJ_PATH "/sys/module/lowmemorykiller/parameters/adj"

// 装载上面两组数字的数组
static int lowmem_adj[MAX_TARGETS];
static int lowmem_minfree[MAX_TARGETS];

// 三种command
enum lmk_cmd {
    LMK_TARGET,
    LMK_PROCPRIO,
    LMK_PROCREMOVE,
};

// 优先级的最小值
#define OOM_SCORE_ADJ_MIN       (-1000)
// 优先级最大值
#define OOM_SCORE_ADJ_MAX       1000

// 双向链表结构体
struct adjslot_list {
    struct adjslot_list *next;
    struct adjslot_list *prev;
};

// 进程在lmkd中的数据结构体
struct proc {
    struct adjslot_list asl;
    int pid;
    uid_t uid;
    int oomadj;
    struct proc *pidhash_next;
};

// 存放进程proc的hashtable,index是通过pid的计算得出
static struct proc *pidhash[PIDHASH_SZ];

// 根据pid计算index的hash算法
#define pid_hashfn(x) ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))

// 进程优先级到数组的index之间的转换
// 因为进程的优先级可以是负值,但是数组的index不能为负值
// 不过因为这个转换只是简单加了1000,为了方便,后面的描述中就认为是优先级直接做了index
#define ADJTOSLOT(adj) (adj + -OOM_SCORE_ADJ_MIN)

// table,类似hashtable,不过计算index的方式不是hash,而是oom_score_adj经过转换后直接作为index
// 数组的每个元素都是双向循环链表
// 进程的优先级作为数组的index
// 即以进程的优先级为index,从-1000到+1000 + 1大小的数组,根据优先级,同优先级的进程index相同
// 每个元素是一个双向链表,这个链表上的所有proc的优先级都相同
// 这样根据优先级杀进程的时候就会非常方便,要杀指定优先级的进程可以根据优先级获取到一个进程链表,逐个去杀。
static struct adjslot_list procadjslot_list[ADJTOSLOT(OOM_SCORE_ADJ_MAX) + 1];

2.1 lmkd进程启动入口

代码语言:javascript
复制
int main(int argc __unused, char **argv __unused) {
    struct sched_param param = {
            .sched_priority = 1,
    };
    // 将此进程未来使用到的所有内存都锁在物理内存中,防止内存被交换
    mlockall(MCL_FUTURE);
    // 设置此线程的调度策略为SCHED_FIFO,first-in-first-out,param中主要设置sched_priority
    // 由于SCHED_FIFO是一种实时调度策略,在这个策略下优先级从1(low) -> 99(high)
    // 实时线程通常会比普通线程有更高的优先级
    sched_setscheduler(0, SCHED_FIFO, &param);
    // 初始化epoll以及与ActivityManager的socket连接,等待cmd和data
    if (!init())
        // 进入死循环epoll_wait等待fd事件
        mainloop();
    ALOGI("exiting");
    return 0;
}

前面已经提到,这个进程存在的主要作用是跟AMS进行通信,更新oomAdj,在必要的时候杀掉进程。所以在main函数中主要就是创建了epoll以及初始化socket并连接ActivityManager,然后阻塞等待上层传递cmd以及数据过来。

2.2 init初始化

代码语言:javascript
复制
static int init(void) {
    ...

    // 拿到lmkd的socket fd
    ctrl_lfd = android_get_control_socket("lmkd");
    if (ctrl_lfd < 0) {
        ALOGE("get lmkd control socket failed");
        return -1;
    }
    // server listen
    ret = listen(ctrl_lfd, 1);
    if (ret < 0) {
        ALOGE("lmkd control socket listen failed (errno=%d)", errno);
        return -1;
    }
    epev.events = EPOLLIN;
    // ctrl_connect_handler里面完成了soclet的accpet以及read数据,并对数据进行相应的处理
    epev.data.ptr = (void *)ctrl_connect_handler;
    if (epoll_ctl(epollfd, EPOLL_CTL_ADD, ctrl_lfd, &epev) == -1) {
        ALOGE("epoll_ctl for lmkd control socket failed (errno=%d)", errno);
        return -1;
    }
    maxevents++;
    // 使用kernel空间的处理
    use_inkernel_interface = !access(INKERNEL_MINFREE_PATH, W_OK);

    if (use_inkernel_interface) {
        ALOGI("Using in-kernel low memory killer interface");
    } else {
        ret = init_mp(MEMPRESSURE_WATCH_LEVEL, (void *)&mp_event);
        if (ret)
            ALOGE("Kernel does not support memory pressure events or in-kernel low memory killer");
    }

    // 双向链表初始化
    for (i = 0; i <= ADJTOSLOT(OOM_SCORE_ADJ_MAX); i++) {
        procadjslot_list[i].next = &procadjslot_list[i];
        procadjslot_list[i].prev = &procadjslot_list[i];
    }
    return 0;
}

在初始化的时候,有一个很重要的判断:use_inkernel_interface,这个是根据是否有/sys/module/lowmemorykiller/parameters/minfree的写权限来判断的,没有的情况下就使用kernel空间的逻辑

目前遇到的都是use_inkernel_interface

如果use_inkernel_interface的值为false:

2.3 进入loop循环mainloop

代码语言:javascript
复制
// 进入死循环,然后调用epoll_wait阻塞等待事件的到来
static void mainloop(void) {
    while (1) {
        struct epoll_event events[maxevents];
        int nevents;
        int i;
        ctrl_dfd_reopened = 0;
        nevents = epoll_wait(epollfd, events, maxevents, -1);

        if (nevents == -1) {
            if (errno == EINTR)
                continue;
            ALOGE("epoll_wait failed (errno=%d)", errno);
            continue;
        }

        for (i = 0; i < nevents; ++i) {
            if (events[i].events & EPOLLERR)
                ALOGD("EPOLLERR on event #%d", i);
            if (events[i].data.ptr)
                (*(void (*)(uint32_t))events[i].data.ptr)(events[i].events);
        }
    }
}

2.4 处理socket传递过来的数据ctrl_command_handler

前面在ctrl_connect_handler这个方法中处理了accept,并开始了ctrl_data_handler中读取数据并进行处理:ctrl_command_handler。对于ActivityManager传递来的Command以及data的主要处理逻辑就在ctrl_command_handler中。

代码语言:javascript
复制
static void ctrl_command_handler(void) {
    int ibuf[CTRL_PACKET_MAX / sizeof(int)];
    int len;
    int cmd = -1;
    int nargs;
    int targets;

    len = ctrl_data_read((char *)ibuf, CTRL_PACKET_MAX);
    if (len <= 0)
        return;

    nargs = len / sizeof(int) - 1;
    if (nargs < 0)
        goto wronglen;

    cmd = ntohl(ibuf[0]);

    // 一共三种command,在前面静态变量的定义处已经介绍过
    switch(cmd) {
    // 更新内存级别以及对应级别的进程adj
    case LMK_TARGET:
        targets = nargs / 2;
        if (nargs & 0x1 || targets > (int)ARRAY_SIZE(lowmem_adj))
            goto wronglen;
        cmd_target(targets, &ibuf[1]);
        break;
    // 根据pid更新adj
    case LMK_PROCPRIO:
        if (nargs != 3)
            goto wronglen;
        cmd_procprio(ntohl(ibuf[1]), ntohl(ibuf[2]), ntohl(ibuf[3]));
        break;
    // 根据pid移除proc
    case LMK_PROCREMOVE:
        if (nargs != 1)
            goto wronglen;
        cmd_procremove(ntohl(ibuf[1]));
        break;
    default:
        ALOGE("Received unknown command code %d", cmd);
        return;
    }

    return;

wronglen:
    ALOGE("Wrong control socket read length cmd=%d len=%d", cmd, len);
}

上层代码的调用时机这里就不细化了,往前追的话基本都是在ActivityManagerService中的udpateOomAdj中,也就是说上层根据四大组件的状态对进程的优先级进行调整之后,会及时的反应到lmkd中,在内存不足的时候触发杀进程,会从低优先级开始杀进程。command一共有三种,在上层的代码是在ProcessList中。

2.4.1 LMK_TARGET
代码语言:javascript
复制
// 上层逻辑是在ProcessList.updateOomLevels中
ByteBuffer buf = ByteBuffer.allocate(4 * (2*mOomAdj.length + 1));
buf.putInt(LMK_TARGET);
for (int i=0; i<mOomAdj.length; i++) {
    buf.putInt((mOomMinFree[i]*1024)/PAGE_SIZE);
    buf.putInt(mOomAdj[i]);
}
writeLmkd(buf)

// lmkd处理逻辑
static void cmd_target(int ntargets, int *params) {
    int i;
    if (ntargets > (int)ARRAY_SIZE(lowmem_adj))
        return;
    // 这个for循环对应上面的for循环,将数据读出装进数组中
    for (i = 0; i < ntargets; i++) {
        lowmem_minfree[i] = ntohl(*params++);
        lowmem_adj[i] = ntohl(*params++);
    }
    lowmem_targets_size = ntargets;
    // 使用kernel空间的处理逻辑
    if (use_inkernel_interface) {
        char minfreestr[128];
        char killpriostr[128];
        minfreestr[0] = '\0';
        killpriostr[0] = '\0';
        // 取出两个数组中的数据,以","分隔,分别拼接成string
        for (i = 0; i < lowmem_targets_size; i++) {
            char val[40];
            if (i) {
                strlcat(minfreestr, ",", sizeof(minfreestr));
                strlcat(killpriostr, ",", sizeof(killpriostr));
            }
            snprintf(val, sizeof(val), "%d", lowmem_minfree[i]);
            strlcat(minfreestr, val, sizeof(minfreestr));
            snprintf(val, sizeof(val), "%d", lowmem_adj[i]);
            strlcat(killpriostr, val, sizeof(killpriostr));
        }
        // 将生成好的string写入到文件节点minfree以及adj
        writefilestring(INKERNEL_MINFREE_PATH, minfreestr);
        writefilestring(INKERNEL_ADJ_PATH, killpriostr);
    }
}

上面的处理逻辑主要是:

  1. 按照顺序取出数据,装进lmkd的数组中。
  2. 分别将两个数组中的数取出,用”,”分隔
  3. lowmem_minfree中的数据拼成的string写到 “/sys/module/lowmemorykiller/parameters/minfree”
  4. lowmem_adj中的数据拼成的string写到 “/sys/module/lowmemorykiller/parameters/adj”
2.4.2 LMK_PROCPRIO
代码语言:javascript
复制
// 上层逻辑是在ProcessList.setOomAdj中
public static final void setOomAdj(int pid, int uid, int amt) {
    if (amt == UNKNOWN_ADJ)
        return;

    long start = SystemClock.elapsedRealtime();
    ByteBuffer buf = ByteBuffer.allocate(4 * 4);
    buf.putInt(LMK_PROCPRIO);
    buf.putInt(pid);
    buf.putInt(uid);
    buf.putInt(amt);
    writeLmkd(buf);
    long now = SystemClock.elapsedRealtime();
    if ((now-start) > 250) {
        Slog.w("ActivityManager", "SLOW OOM ADJ: " + (now-start) + "ms for pid " + pid
                + " = " + amt);
    }
}

// lmkd处理逻辑
static void cmd_procprio(int pid, int uid, int oomadj) {
    struct proc *procp;
    char path[80];
    char val[20];
    if (oomadj < OOM_SCORE_ADJ_MIN || oomadj > OOM_SCORE_ADJ_MAX) {
        ALOGE("Invalid PROCPRIO oomadj argument %d", oomadj);
        return;
    }
    // LMK_PROCPRIO的主要作用就是更新进程的oomAdj
    // 将上层传递过来的数据(pid以及优先级)写到该进程对应的文件节点
    // /proc/pid/oom_score_adj
    snprintf(path, sizeof(path), "/proc/%d/oom_score_adj", pid);
    snprintf(val, sizeof(val), "%d", oomadj);
    writefilestring(path, val);
    // 如果使用kernel的使用逻辑,return
    // 即这个command传递过来只是更新了对应文件节点的oom_score_adj
    if (use_inkernel_interface)
        return;
    // 从hashtable中查找proc
    procp = pid_lookup(pid);
    // 如果没有查找到,也就是说这个进程是新创建的,lmkd维护的数据结构中还没有这个proc,因此需要新建并添加到hashtable中
    if (!procp) {
            procp = malloc(sizeof(struct proc));
            if (!procp) {
                // Oh, the irony.  May need to rebuild our state.
                return;
            }
            procp->pid = pid;
            procp->uid = uid;
            procp->oomadj = oomadj;
            // 将proc插入到lmkd中的数据结构中,主要包括两个数据结构
            // 更新hashtable,通过pid计算hash值,然后存储,解决冲突是让新来的作为数组元素链表的头结点
            // 优先级为index的双向链表组成的table
            proc_insert(procp);
    } else {
        // hashtable中已经有这个proc
        // 但是因为优先级的变化,需要先把这个proc从原先的优先级table中对应位置的双向链表中remove
        // 然后新加到新的优先级对应的双向链表中
        // 双向链表的添加是新来的放在头部
        proc_unslot(procp);
        procp->oomadj = oomadj;
        proc_slot(procp);
    }
}

// 其中pid_lookup:查询hashtable,因为进程的pid是唯一的,然后从中取出该pid在lmkd中的proc结构体。
static struct proc *pid_lookup(int pid) {
    struct proc *procp;
    for (procp = pidhash[pid_hashfn(pid)]; procp && procp->pid != pid;
         procp = procp->pidhash_next)
            ;
    return procp;
}
2.4.3 LMK_PROCREMOVE
代码语言:javascript
复制
// 上层处理逻辑在ProcessList.remove中
public static final void remove(int pid) {
    ByteBuffer buf = ByteBuffer.allocate(4 * 2);
    buf.putInt(LMK_PROCREMOVE);
    buf.putInt(pid);
    writeLmkd(buf);
}

// lmkd处理逻辑
static void cmd_procremove(int pid) {
    // 如果使用kernel接口,return
    if (use_inkernel_interface)
        return;
    // 更新数据结构,pid的hashtable以及进程优先级的双向链表table
    pid_remove(pid);
    kill_lasttime = 0;
}

static int pid_remove(int pid) {
    int hval = pid_hashfn(pid);
    struct proc *procp;
    struct proc *prevp;
    // pid的hashtable
    for (procp = pidhash[hval], prevp = NULL; procp && procp->pid != pid;
         procp = procp->pidhash_next)
            prevp = procp;
    if (!procp)
        return -1;
    if (!prevp)
        pidhash[hval] = procp->pidhash_next;
    else
        prevp->pidhash_next = procp->pidhash_next;
    // 进程优先级的table
    proc_unslot(procp);
    free(procp);
    return 0;
}
2.4.4 小结

从上面的处理逻辑就能看出来,三种command的处理逻辑中都对use_inkernel_interface的情况下做了特殊处理,在use_inkernel_interface的情况下,做的事情都是很简单的,只是更新一下文件节点。如果不使用kernel interface,就需要lmkd自己维护两个table,在每次更新adj的时候去更新table。 且在初始化的时候也能看到,如果不使用kernel的lowmemorykiller,则需要lmkd自己获取手机内存状态,如果匹配到了minfree中的等级,则需要通过杀掉一些进程释放内存。

2.5 杀进程

初始化的时候已经注册好了,当获取到手机的内存匹配到minfree中某一个级别时:

2.5.1 查找
代码语言:javascript
复制
// 不使用kernel interface
// 根据当前内存的状态查找需要杀掉的进程
static int find_and_kill_process(int other_free, int other_file, bool first)
{
    ...
    // 主要逻辑是这里的for循环
    // 根据前面最小内存级别与优先级的对应关系
    // 拿到需要杀的进程的优先级
    for (i = 0; i < lowmem_targets_size; i++) {
        minfree = lowmem_minfree[i];
        if (other_free < minfree && other_file < minfree) {
            min_score_adj = lowmem_adj[i];
            break;
        }
    }
    if (min_score_adj == OOM_SCORE_ADJ_MAX + 1)
        return 0;
    for (i = OOM_SCORE_ADJ_MAX; i >= min_score_adj; i--) {
        struct proc *procp;
retry:
        // 从优先级table中取出一个
        // 因为是双向循环链表,取的时候取出head->prev,也就是最后一个
        // 也就是使用的lru算法,先把近期不用的进程杀掉
        procp = proc_adj_lru(i);
        if (procp) {
            // 杀进程,通过发信号的方式
            // 返回值是杀了该进程之后释放的内存的大小
            // 如果释放内存之后依然不满足要求,则从链表上再取一个杀
            killed_size = kill_one_process(procp, other_free, other_file, minfree, min_score_adj, first);
            if (killed_size < 0) {
                goto retry;
            } else {
                return killed_size;
            }
        }
    }
    return 0;
}

2.6 小结

这部分从lmkd的main开始,从一些数据结构的初始化,到进入loop,再到与ActivityManager的socket连接,接收上层传递的数据,然后分别根据三种command做出不同的更新与删除等。当然最重要的还是use_inkernel_interface这个变量,从初始化到所有命令的处理都与这个逻辑分不开,如果不使用的话,需要自维护进程的数据结构,需要读取文件节点获取手机内存状态,在minfree匹配到时去查找并杀进程,直到释放足够多的内存。在使用kernel空间lowmemorykiller的情况下,三种命令做的事情会非常有限,主要是更新文件节点,而lmdk本身根本不需要维护任何跟进程相关的结构,判断手机状态并查找低优先级的进程以及杀进程的工作全部都由lowmemorykiller完成。

3. lowmemorykiller

前面也提过,大多情况其实是使用kernel interface的,其实也就是kernel中的lowmemorykiller

代码位置:/kernel/msm-3.18/drivers/staging/android/lowmemorykiller.c

lowmemorykiller中是通过linux的shrinker实现的,这个是linux的内存回收机制的一种,由内核线程kswapd负责监控,在lowmemorykiller初始化的时候注册register_shrinker。

代码语言:javascript
复制
static int __init lowmem_init(void)
{
    register_shrinker(&lowmem_shrinker);
    vmpressure_notifier_register(&lmk_vmpr_nb);
    return 0;
}

minfree以及min_adj两个数组:

代码语言:javascript
复制
// 下面两个数组分别代表了两个参数文件中的默认值,数组默认的size都是6
// 对应 "/sys/module/lowmemorykiller/parameters/adj"
static short lowmem_adj[6] = {
    0,
    1,
    6,
    12,
};
static int lowmem_adj_size = 4;

// 对应 "/sys/module/lowmemorykiller/parameters/minfree"
static int lowmem_minfree[6] = {
    3 * 512,    /* 6MB */
    2 * 1024,   /* 8MB */
    4 * 1024,   /* 16MB */
    16 * 1024,  /* 64MB */
};
static int lowmem_minfree_size = 4;

扫描当前内存以及杀进程:

代码语言:javascript
复制
static unsigned long lowmem_scan(struct shrinker *s, struct shrink_control *sc)
{
    struct task_struct *tsk;
    struct task_struct *selected = NULL;
    unsigned long rem = 0;
    int tasksize;
    int i;
    // OOM_SCORE_ADJ_MAX = 1000
    short min_score_adj = OOM_SCORE_ADJ_MAX + 1;
    int minfree = 0;
    int selected_tasksize = 0;
    short selected_oom_score_adj;
    // array_size = 6
    int array_size = ARRAY_SIZE(lowmem_adj);
    // NR_FREE_PAGES 是在/kernel/msm-3.18/include/linux/mmzone.h中定义的zone_stat_item对应的第一个枚举,下面的枚举以此类推
    // global_page_state(NR_FREE_PAGES)即读取/proc/vmstat 中第一行的值
    int other_free = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
    int other_file = global_page_state(NR_FILE_PAGES) -
                        global_page_state(NR_SHMEM) -
                        global_page_state(NR_UNEVICTABLE) -
                        total_swapcache_pages();

    if (lowmem_adj_size < array_size)
        array_size = lowmem_adj_size;
    if (lowmem_minfree_size < array_size)
        array_size = lowmem_minfree_size;
    for (i = 0; i < array_size; i++) {
        // 从小到大扫描lowmem_minfree数组,根据剩余内存的大小,确定当前剩余内存的级别
        minfree = lowmem_minfree[i];
        if (other_free < minfree && other_file < (minfree + minfree / 4)) {
            // 由于两个数组之间的对应关系,minfree中找到当前内存所处的等级之后
            // 也就可以在lowmem_adj获取到在这个内存级别需要杀掉的进程的优先级
            min_score_adj = lowmem_adj[i];
            break;
        }
    }

    lowmem_print(3, "lowmem_scan %lu, %x, ofree %d %d, ma %hd\n",
             sc->nr_to_scan, sc->gfp_mask, other_free,
             other_file, min_score_adj);
    // 经过一轮扫描,发现不需要杀进程,return
    if (min_score_adj == OOM_SCORE_ADJ_MAX + 1) {
        lowmem_print(5, "lowmem_scan %lu, %x, return 0\n",
                 sc->nr_to_scan, sc->gfp_mask);
        return 0;
    }

    selected_oom_score_adj = min_score_adj;
    // 内核一种同步机制 -- RCU同步机制
    rcu_read_lock();
again:
    // for_each_process用来遍历所有的进程
    // 定义在 /kernel/msm-3.18/include/linux/sched.h
    // #define for_each_process(p) \
    //  for (p = &init_task ; (p = next_task(p)) != &init_task ; )
    for_each_process(tsk) {
        struct task_struct *p;
        short oom_score_adj;
        // 内核线程kthread
        if (tsk->flags & PF_KTHREAD)
            continue;
        // 已经被杀,还在等锁
        if (test_tsk_lmk_waiting(tsk)) {
            lowmem_print(2, "%s (%d) is already killed, skip\n",
                tsk->comm, tsk->pid);
            continue;
        }
        // 一个task
        // 定义在 /kernel/msm-3.18/mm/oom_kill.c
        p = find_lock_task_mm(tsk);
        if (!p)
            continue;

        oom_score_adj = p->signal->oom_score_adj;
        if (oom_score_adj < min_score_adj) {
            // 如果当前找到的进程的oom_score_adj比当前需要杀的最小优先级还低,不杀
            task_unlock(p);
            continue;
        }
        // 拿到占用的内存大小
        // 定义在 /kernel/msm-3.18/include/linux/mm.h
        tasksize = get_mm_rss(p->mm);
#ifdef CONFIG_ZRAM
        tasksize += (get_mm_counter(p->mm, MM_SWAPENTS) / 3);
#endif
        task_unlock(p);
        if (tasksize <= 0)
            continue;
        if (selected) {
        // 第一次不会进到这
        // 第二次,也就是循环回来,判断如果当前选中的进程的adj更小
        // 或优先级相同但是内存比较小,则continue
            if (oom_score_adj < selected_oom_score_adj)
                continue;
            if (oom_score_adj == selected_oom_score_adj &&
                tasksize <= selected_tasksize)
                continue;
        }
        selected = p;
        selected_tasksize = tasksize;
        selected_oom_score_adj = oom_score_adj;
        // 已经选中了进程p,准备kill
        lowmem_print(2, "select '%s' (%d, %d), adj %hd, size %d, to kill\n",
                 p->comm, p->pid, p->tgid, oom_score_adj, tasksize);
    }
    if (selected) {
        task_lock(selected);
        // 给该进程发信号 SIGKILL
        send_sig(SIGKILL, selected, 0);
        if (selected->mm)
            task_set_lmk_waiting(selected);
        task_unlock(selected);
        // 杀进程完毕,打印kernel log, tag是lowmemorykiller
        lowmem_print(1, "Killing '%s' (%d), adj %hd,\n"
                 "   to free %ldkB on behalf of '%s' (%d) because\n"
                 "   cache %ldkB is below limit %ldkB for oom_score_adj %hd\n"
                 "   Free memory is %ldkB above reserved\n",
                 selected->comm, selected->pid,
                 selected_oom_score_adj,
                 selected_tasksize * (long)(PAGE_SIZE / 1024),
                 current->comm, current->pid,
                 other_file * (long)(PAGE_SIZE / 1024),
                 minfree * (long)(PAGE_SIZE / 1024),
                 min_score_adj,
                 other_free * (long)(PAGE_SIZE / 1024));
        lowmem_deathpending_timeout = jiffies + HZ;
        // 释放的内存大小
        rem += selected_tasksize;
    }
    // 如果需要杀掉多个进程
    // kill_one_more在lmk_vmpressure_notifier中置true
    if (kill_one_more) {
        selected = NULL;
        kill_one_more = false;
        lowmem_print(1, "lowmem_scan kill one more process\n");
        // 跳转到遍历的地方再开始
        goto again;
    }
    lowmem_print(4, "lowmem_scan %lu, %x, return %lu\n",
             sc->nr_to_scan, sc->gfp_mask, rem);
    rcu_read_unlock();
    return rem;
}

lmk_vmpressure_notifier中定义了什么时候去kill_one_more,主要是当内存压力在95以上时

lmk_vmpressure_notifier这个也是在init时注册:vmpressure_notifier_register(&lmk_vmpr_nb);

代码语言:javascript
复制
static int lmk_vmpressure_notifier(struct notifier_block *nb,
            unsigned long action, void *data)
{
    unsigned long pressure = action;

    if (pressure >= 95) {
        if (!kill_one_more) {
            kill_one_more = true;
            lowmem_print(2, "vmpressure %ld, set kill_one_more true\n",
                pressure);
        }
    } else {
        if (kill_one_more) {
            kill_one_more = false;
            lowmem_print(2, "vmpressure %ld, set kill_one_more false\n",
                pressure);
        }
    }
    return 0;
}

oom_adj到oom_score_adj的转换:

代码语言:javascript
复制
static short lowmem_oom_adj_to_oom_score_adj(short oom_adj)
{
    if (oom_adj == OOM_ADJUST_MAX)
        return OOM_SCORE_ADJ_MAX;
    else
        return (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
}

4. 总结

由于Android中的进程启动的很频繁,四大组件都会涉及到进程启动,进程启动之后做完组要做的事情之后就会很快被AMS把优先级降低,但是为了针对低内存的情况以及如果用户开启太多,且APP的优先级很高,AMS这边就有一些无力了,为了保证手机正常运行必须有进程清理,内存回收,根据当前手机剩余内存的状态,在minfree中找到当前等级,再根据这个等级去adj中找到这个等级应该杀掉的进程的优先级,然后去杀进程,直到释放足够的内存。目前大多都使用kernel中的lowmemorykiller,但是上层用户的APP的优先级的调整还是AMS来完成的,lmkd在中间充当了一个桥梁的角色,通过把上层的更新之后的adj写入到文件节点,提供lowmemorykiller杀进程的依据。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-03-29 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.概述
  • 2.init进程lmkd
    • 2.1 lmkd进程启动入口
      • 2.2 init初始化
        • 2.3 进入loop循环mainloop
          • 2.4 处理socket传递过来的数据ctrl_command_handler
            • 2.4.1 LMK_TARGET
            • 2.4.2 LMK_PROCPRIO
            • 2.4.3 LMK_PROCREMOVE
            • 2.4.4 小结
          • 2.5 杀进程
            • 2.5.1 查找
          • 2.6 小结
          • 3. lowmemorykiller
          • 4. 总结
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档