前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Android 音视频开发打怪升级:OpenGL渲染视频画面篇】五、OpenGL FBO数据缓冲区

【Android 音视频开发打怪升级:OpenGL渲染视频画面篇】五、OpenGL FBO数据缓冲区

作者头像
开发的猫
发布2020-04-02 10:14:01
2.4K0
发布2020-04-02 10:14:01
举报
文章被收录于专栏:猫哥的专栏猫哥的专栏

先来看看利用FBO实现的灵魂出窍效果:

灵魂出窍
灵魂出窍

一、FBO与EGL的离屏渲染的区别

上一篇文章,讲解了如何使用EGL,并且提到EGL可以建立一个离屏渲染的缓冲区,这种离屏渲染的方式通常用于模拟整个渲染窗口,比如可以用于FFmpeg软编码,将显示在虚拟窗口中的画面编码成H264。

与此同时,OpenGL也提供另外一种离屏渲染方式,即FBO。FBO不仅可以实现离屏渲染整个OpenGL窗口,也可以用于处理碎片画面,即窗口中的小画面。

关于EGL的离屏渲染,将会在后面关于FFmpeg的文章中使用到,这里暂且不论。

而在视频编辑当中,FBO离屏渲染扮演着很重要的角色,许多的视频滤镜都会用到,接下来就来看看FBO如何使用吧。

二、FBO简介

OpenGL 在渲染到系统窗口之前,都会将数据送到 FBO 上,也就是说,FBO 其实一直在默默的为我们服务。 所以,OpenGL 在一开始就创建了一个默认的 FBO。

FBO:Frame Buffer Object,帧缓存对象。

从名字上看,往往很容易让人误解这是一个缓存空间,但实际上,FBO很重要的在最后面的Object上。这是一个缓存对象,包含了多个缓冲索引,分别为颜色缓冲(Color buffers), 深度缓冲(Depth buffer), 模板缓冲(Stencil buffer)

之所以说是缓冲索引,是因为FBO并不包含这些缓冲数据,仅仅保存了缓冲数据的索引地址。

FBO和这些缓冲区则通过附着点进行连接。

可以看到FBO中包含了:

1. 多个颜色附着点(GL_COLOR_ATTACHMENT0、GL_COLOR_ATTACHMENT1...)
2. 一个深度附着点(GL_DEPTH_ATTACHMENT)
3. 一个模板附着点(GL_STENCIL_ATTACHMENT)

可以划分为两类:

纹理附着(颜色附着):主要用于将颜色渲染到纹理中。

渲染缓冲对象RBO(Render Buffer Objecgt):主要用于渲染深度信息和模板信息。

在2D中,通常只用到了颜色附着,另外两种附着通常在3D渲染中使用。

上面说了,FBO可用于离屏渲染,下面就来看看如何通过FBO将画面渲染到一个“后台”的纹理中。

这里的后台,指不用于显示到窗口的纹理。

三、如何使用FBO

1. 新建纹理
fun createFBOTexture(width: Int, height: Int): IntArray {
    // 新建纹理ID
    val textures = IntArray(1)
    GLES20.glGenTextures(1, textures, 0)
    
    // 绑定纹理ID
    GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textures[0])
    
    // 根据颜色参数,宽高等信息,为上面的纹理ID,生成一个2D纹理
    GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_RGBA, width, height,
        0, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, null)
        
    // 设置纹理边缘参数
    GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST.toFloat())
    GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER,GLES20.GL_LINEAR.toFloat())
    GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S,GLES20.GL_CLAMP_TO_EDGE.toFloat())
    GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T,GLES20.GL_CLAMP_TO_EDGE.toFloat())
    
    // 解绑纹理ID
    GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,0)
    return textures
}

生成一个用于FBO的纹理和普通的纹理其实差不多。

首先,生成一个纹理ID,并绑定到OpenGL中。

其次,给这个纹理ID生成对应的纹理。

这里使用的是 GLES20.glTexImage2D ,在渲染图片纹理的时候,使用的是 GLUtils.texImage2D关于创建纹理的宽高问题,这里说明一下: FBO创建的是一个虚拟的窗口,所以,大小是可以根据自己的需求设置的,可以比实际系统窗口大。为了视频画面比例正常,可以把OpenGL的窗口宽高,以及纹理的宽高都设置为视频的宽高。因此,OpenGL在渲染的时候,我们也把无需再通过矩阵变换来矫正比例,直接拉伸就可以。

最后,设置纹理边缘参数,然后解绑。

2. 新建FrameBuffer
fun createFrameBuffer(): Int {
    val fbs = IntArray(1)
    GLES20.glGenFramebuffers(1, fbs, 0)
    return fbs[0]
}

新建FrameBuffer类似新建纹理ID,最后返回FBO索引

3. 绑定FBO
fun bindFBO(fb: Int, textureId: Int) {
    GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, fb)
    GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0,
        GLES20.GL_TEXTURE_2D, textureId, 0)
}

先绑定上面创建的FBO,接着将FBO和上面创建的纹理通过颜色附着点 GLES20.GL_COLOR_ATTACHMENT0 绑定起来。

4. 解绑FBO
fun unbindFBO() {
    GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, GLES20.GL_NONE)
    GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0)
}

解绑FBO比较简单,其实就是将FBO绑定到默认的窗口上。

这里的 GLES20.GL_NONE 其实就是 0 ,也就是系统默认的窗口的 FBO 。

5. 删除FBO
fun deleteFBO(frame: IntArray, texture:IntArray) {
    //删除Frame Buffer
    GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, GLES20.GL_NONE)
    GLES20.glDeleteFramebuffers(1, frame, 0)
    //删除纹理
    GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0)
    GLES20.glDeleteTextures(1, texture, 0)
}

以上,其实就是使用FBO的流程了:

  1. 新建纹理
  2. 新建FBO
  3. 绑定将纹理附着到FBO的颜色附着点上
  4. 【渲染】
  5. 解绑FBO
  6. 删除FBO

除了第4步以外,其他都是上面的封装好的方法。

那么接下就来看看,如何将画面渲染到FBO连接的纹理上。

为了更好的理解整个渲染的过程,下面通过一个非常经典的滤镜来演示这个渲染的流程。

三、使用FBO实现“灵魂出窍”滤镜

1. 如何实现灵魂出窍
  • 静态图灵魂出窍

这个效果可以拆分为3个效果:

  1. 底层静态图
  2. 上层放大
  3. 上层半透明

进而拆分为2个组合:

  1. 底层静态图
  2. 上层不断放大,并且随着放大增加透明度
  3. 视频灵魂出窍

根据静态图的灵魂出窍效果,可以知道,上层的灵魂出窍效果是根据原图而来的,就是说,灵魂的基础图片是不会变化的。

而视频的每一帧都是在变化的。

所以,为了使上层的“灵魂”达到比较平滑的放大效果,需要把一帧保持住一段时间,让这一帧完成完整的放大过程。

这里就遇到了一个问题:如何保存视频的某一帧?

FBO 就是解决这个问题的关键。

2. 封装FBO工具

为了可以方便的使用FBO相关的方法,我们将上面的方法都封装在一个静态工具中 OpenGLTools

object OpenGLTools {
    fun createFBOTexture(width: Int, height: Int): IntArray {
        // 新建纹理ID
        val textures = IntArray(1)
        GLES20.glGenTextures(1, textures, 0)
        
        // 绑定纹理ID
        GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textures[0])
        
        // 根据颜色参数,宽高等信息,为上面的纹理ID,生成一个2D纹理
        GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_RGBA, width, height,
            0, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, null)
            
        // 设置纹理边缘参数
        GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST.toFloat())
        GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER,GLES20.GL_LINEAR.toFloat())
        GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S,GLES20.GL_CLAMP_TO_EDGE.toFloat())
        GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T,GLES20.GL_CLAMP_TO_EDGE.toFloat())
        
        // 解绑纹理ID
        GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,0)
        return textures
    }
    
    fun createFrameBuffer(): Int {
        val fbs = IntArray(1)
        GLES20.glGenFramebuffers(1, fbs, 0)
        return fbs[0]
    }
    
    fun bindFBO(fb: Int, textureId: Int) {
        GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, fb)
        GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0,
            GLES20.GL_TEXTURE_2D, textureId, 0)
    }
    
    fun unbindFBO() {
        GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, GLES20.GL_NONE)
        GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0)
    }
    
    fun deleteFBO(frame: IntArray, texture:IntArray) {
        //删除Frame Buffer
        GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, GLES20.GL_NONE)
        GLES20.glDeleteFramebuffers(1, frame, 0)
        //删除纹理
        GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0)
        GLES20.glDeleteTextures(1, texture, 0)
    }
}
3. 在视频渲染器中,接入FBO
  • 新建渲染器 SoulVideoDrawer

这里将之前的VideoDrawer直接复制过来,如果大家阅读过之前的文章,相信对VideoDrawer应该不会陌生了。所以这里就不再贴完整代码了。详情请查看之前的文章,或者直接看源码:VideoDrawer

其实 SoulVideoDrawer 大部分代码和 VideoDrawer 一致,这里查看完整源码:SoulVideoDrawer

这次,不再像之前那样一次性贴出完整的代码,一步步来看下如何使用 FBO 。

class SoulVideoDrawer : IDrawer {

    // ......
    
    // 省略和VideoDrawer一样成员变量
    
    // ......

//-------------灵魂出窍相关的变量--------------

    /**上下颠倒的顶点矩阵*/
    private val mReserveVertexCoors = floatArrayOf(
        -1f, 1f,
        1f, 1f,
        -1f, -1f,
        1f, -1f
    )

    private val mDefVertexCoors = floatArrayOf(
        -1f, -1f,
        1f, -1f,
        -1f, 1f,
        1f, 1f
    )

    // 顶点坐标
    private var mVertexCoors = mDefVertexCoors
    
    // 灵魂帧缓冲
    private var mSoulFrameBuffer: Int = -1

    // 灵魂纹理ID
    private var mSoulTextureId: Int = -1

    // 灵魂纹理接收者
    private var mSoulTextureHandler: Int = -1

    // 灵魂缩放进度接收者
    private var mProgressHandler: Int = -1

    // 是否更新FBO纹理
    private var mDrawFbo: Int = 1

    // 更新FBO标记接收者
    private var mDrawFobHandler: Int = -1

    // 一帧灵魂的时间
    private var mModifyTime: Long = -1
    
    override fun draw() {
        if (mTextureId != -1) {
            initDefMatrix()
            //【步骤1: 创建、编译并启动OpenGL着色器】
            createGLPrg()
            
            // -------【步骤2:新增FBO部分】-----
            //【步骤2.1: 更新灵魂纹理】
            updateFBO()
            //【步骤2.2: 激活灵魂纹理单元】
            activateSoulTexture()
            // ---------------------------
            
            //【步骤3: 激活并绑定纹理单元】
            activateDefTexture()
            //【步骤4: 绑定图片到纹理单元】
            updateTexture()
            //【步骤5: 开始渲染绘制】
            doDraw()
        }
    }
    
    // ......
}

增加了和FBO、实现灵魂出窍效果相关的成员变量。

重点关注 draw 方法,有5个步骤,但真正增加的其实就是第2个步骤:

步骤2: 新增FBO部分
- 2.1: 更新灵魂纹理【updateFBO】
- 2.2: 激活灵魂纹理单元【activateSoulTexture】

先来看2.1。

  • 更新附着在FBO上的纹理
class SoulVideoDrawer : IDrawer {

    // ......
    
    private fun updateFBO() {
        //【1,创建FBO纹理】
        if (mSoulTextureId == -1) {
            mSoulTextureId = OpenGLTools.createFBOTexture(mVideoWidth, mVideoHeight)
        }
        // 【2,创建FBO】
        if (mSoulFrameBuffer == -1) {
            mSoulFrameBuffer = OpenGLTools.createFrameBuffer()
        }
        // 【3,渲染到FBO】
        if (System.currentTimeMillis() - mModifyTime > 500) {
            mModifyTime = System.currentTimeMillis()
            // 绑定FBO
            OpenGLTools.bindFBO(mSoulFrameBuffer, mSoulTextureId)
            // 配置FBO窗口
            configFboViewport()
            
//--------执行正常画面渲染,画面将渲染到FBO上--------------

            // 激活默认的纹理
            activateDefTexture()
            // 更新纹理
            updateTexture()
            // 绘制到FBO
            doDraw()
            
//---------------------------------------------------

            // 解绑FBO
            OpenGLTools.unbindFBO()
            // 恢复默认绘制窗口
            configDefViewport()
        }
    }

    /**
     * 配置FBO窗口
     */
    private fun configFboViewport() {
        mDrawFbo = 1
        // 将变换矩阵回复为单位矩阵(将画面拉升到整个窗口大小,设置窗口比例和FBO纹理比例一致,画面刚好可以正常绘制到FBO纹理上)
        Matrix.setIdentityM(mMatrix, 0)
        // 设置颠倒的顶点坐标
        mVertexCoors = mReserveVertexCoors
        //重新初始化顶点坐标
        initPos()
        GLES20.glViewport(0, 0, mVideoWidth, mVideoHeight)
        //设置一个颜色状态
        GLES20.glClearColor(0.0f, 0.0f, 0.0f, 0.0f)
        //使能颜色状态的值来清屏
        GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT)
    }

    /**
     * 配置默认显示的窗口
     */
    private fun configDefViewport() {
        mDrawFbo = 0
        mMatrix = null
        // 恢复顶点坐标
        mVertexCoors = mDefVertexCoors
        initPos()
        initDefMatrix()
        // 恢复窗口
        GLES20.glViewport(0, 0, mWorldWidth, mWorldHeight)
    }

    private fun activateDefTexture() {
        activateTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, mTextureId, 0, mTextureHandler)
    }

    private fun activateSoulTexture() {
        activateTexture(GLES11.GL_TEXTURE_2D, mSoulTextureId, 1, mSoulTextureHandler)
    }

    private fun activateTexture(type: Int, textureId: Int, index: Int, textureHandler: Int) {
        //激活指定纹理单元
        GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + index)
        //绑定纹理ID到纹理单元
        GLES20.glBindTexture(type, textureId)
        //将激活的纹理单元传递到着色器里面
        GLES20.glUniform1i(textureHandler, index)
        //配置边缘过渡参数
        GLES20.glTexParameterf(type, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR.toFloat())
        GLES20.glTexParameterf(type, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR.toFloat())
        GLES20.glTexParameteri(type, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE)
        GLES20.glTexParameteri(type, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE)
    }
    
    // ......
}

updateFBO 方法,3个步骤:

  1. 创建纹理
  2. 创建FBO
  3. 将图像渲染到FBO的纹理上

前面2个步骤,在之前已经介绍过,不再赘述。

重点看第3步。

这里让一帧图像保持500ms,我们用一个变量 mModifyTime 来记录当前这一帧渲染时候的时间,只要过了500ms,就刷新一次画面。

来看渲染FBO的过程:

if (System.currentTimeMillis() - mModifyTime > 500) {
    // 记录时间
    mModifyTime = System.currentTimeMillis()
    // 绑定FBO
    OpenGLTools.bindFBO(mSoulFrameBuffer, mSoulTextureId)
    // 配置FBO窗口
    configFboViewport()
//--------执行正常画面渲染,画面将渲染到FBO上--------------
    // 激活默认的纹理
    activateDefTexture()
    // 更新纹理
    updateTexture()
    // 绘制到FBO
    doDraw()
//---------------------------------------------------
    // 解绑FBO
    OpenGLTools.unbindFBO()
    // 恢复默认绘制窗口
    configDefViewport()
}

i. 绑定FBO

当调用了 OpenGLTools.bindFBO 之后,所有对于OpenGL的操作都将影响到我们自己创建的FBO。也就是说,在调用 OpenGLTools.unbindFBO() 解绑FBO之前,下面所有的操作,都将作用在FBO上。

ii. 重新配置FBO窗口大小

将OpenGL窗口设置为视频大小,并且将矩阵变化重置(画面拉升到窗口大小),然后清屏。 至于为什么要重新设置窗口大小,前面设置纹理大小的时候已经说过了。 还有一点要注意的是,这里将纹理坐标 mVertexCoors 做了上下颠倒(其实就是恢复为OpenGL默认的坐标),这样渲染到FBO绑定的纹理上后,在片元着色器里面才能正常取色。

代码如下:

private fun configFboViewport() {
    mDrawFbo = 1
    // 将变换矩阵恢复为单位矩阵
    //(将画面拉升到整个窗口大小,
    // 设置窗口宽高和FBO纹理宽高一致,
    // 画面刚好可以正常绘制到FBO绑定的纹理上)
    Matrix.setIdentityM(mMatrix, 0)
    // 设置颠倒的顶点坐标
    mVertexCoors = mReserveVertexCoors
    //重新初始化顶点坐标
    initPos()
    // 设置窗口大小
    GLES20.glViewport(0, 0, mVideoWidth, mVideoHeight)
    //设置一个颜色状态
    GLES20.glClearColor(0.0f, 0.0f, 0.0f, 0.0f)
    //使能颜色状态的值来清屏
    GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT)
}

iii. 激活和更新视频原来的纹理

注意,这里是激活原来的渲染视频的纹理

iv. 渲染绘制

也就是说,在绑定了FBO以后,按照正常的渲染流程,就可以将画面渲染到FBO上了。

v. 解除FBO绑定,将窗口大小、纹理坐标、矩阵都恢复回原来的配置。

将渲染重新切换到原来的系统窗口上,画面将重新显示到系统窗口上。

通过以上步骤,就将画面渲染到FBO绑定的纹理 mSoulTextureId 上面了。

4. 实现灵魂出窍效果

前面,我们将一帧画面渲染到了 mSoulTextureId 这个纹理上, 接下来就要利用这个纹理,将画面放大、透明渐变实现灵魂效果。

回到draw方法中,来到2.2步骤。

override fun draw() {
    if (mTextureId != -1) {
        //【步骤1: 创建、编译并启动OpenGL着色器】
        // -------【步骤2:新增FBO部分】-----
        //【步骤2.1: 更新灵魂纹理】
        //【步骤2.2: 激活灵魂纹理单元】
        activateSoulTexture()
        // ---------------------------
        
        //【步骤3: 激活并绑定纹理单元】
        activateDefTexture()
        //【步骤4: 绑定图片到纹理单元】
        updateTexture()
        //【步骤5: 开始渲染绘制】
        doDraw()
    }
}

看下激活如何激活“灵魂”的纹理。

  • 传递多个纹理到着色器中
private fun activateSoulTexture() {
    activateTexture(GLES11.GL_TEXTURE_2D, mSoulTextureId, 1, mSoulTextureHandler)
}

private fun activateTexture(type: Int, textureId: Int, index: Int, textureHandler: Int) {
    //激活指定纹理单元
    GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + index)
    //绑定纹理ID到纹理单元
    GLES20.glBindTexture(type, textureId)
    //将激活的纹理单元传递到着色器里面
    GLES20.glUniform1i(textureHandler, index)
    //配置边缘过渡参数
    GLES20.glTexParameterf(type, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR.toFloat())
    GLES20.glTexParameterf(type, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR.toFloat())
    GLES20.glTexParameteri(type, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE)
    GLES20.glTexParameteri(type, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE)
}

和之前文章稍微有点不同,以前参数都是直接写死的。这次改造了一下 activateTexture纹理类型纹理ID纹理单元索引 ,以及着色器对应的 纹理接收器 ,作为参数传递进来。

有2点要注意的:

  1. 关于纹理类型。在 activateSoulTexture 中,需要注意的是,纹理的类型为普通纹理类型 GLES11.GL_TEXTURE_2D , 而非扩展纹理 GLES11Ext.GL_TEXTURE_EXTERNAL_OES ,因为经过之前的渲染以后,画面已经是普通纹理了。
  2. 关于纹理单元。在OpenGL基础知识中说过,OpenGL内置了多个纹理单元,并且可以同时使用。 所以这里, 正常画面的纹理单元设置为默认的 GLES20.GL_TEXTURE0, “灵魂”的纹理单元为 GLES20.GL_TEXTURE1 = GLES20.GL_TEXTURE0 + 1

接着,激活默认的正常画面纹理 updateTexture() ,这样就可以在片元着色器中,同时接收这两个纹理单元。

private fun activateDefTexture() {
    activateTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, mTextureId, 0, mTextureHandler)
}
  • 渲染绘制

最后,启动渲染绘制,进入到着色器中。

  • “灵魂出窍”着色器

前面做了这么多的铺垫,其实都是为了将一帧固定的视频画面传递到着色器中。真正实现“灵魂出窍”的效果,也是在片元着色器中。

着色器代码如下:

private fun getVertexShader(): String {
    return "attribute vec4 aPosition;" +
            "precision mediump float;" +
            "uniform mat4 uMatrix;" +
            "attribute vec2 aCoordinate;" +
            "varying vec2 vCoordinate;" +
            "attribute float alpha;" +
            "varying float inAlpha;" +
            "void main() {" +
            "    gl_Position = uMatrix*aPosition;" +
            "    vCoordinate = aCoordinate;" +
            "    inAlpha = alpha;" +
            "}"
}

private fun getFragmentShader(): String {
    //一定要加换行"\n",否则会和下一行的precision混在一起,导致编译出错
    return "#extension GL_OES_EGL_image_external : require\n" +
            "precision mediump float;" +
            "varying vec2 vCoordinate;" +
            "varying float inAlpha;" +
            "uniform samplerExternalOES uTexture;" +
            "uniform float progress;" +
            "uniform int drawFbo;" +
            "uniform sampler2D uSoulTexture;" +
            "void main() {" +
                // 透明度[0,0.4]
                "float alpha = 0.6 * (1.0 - progress);" +
                // 缩放比例[1.0,1.5]
                "float scale = 1.0 + (1.5 - 1.0) * progress;" +

                // 放大纹理坐标
                "float soulX = 0.5 + (vCoordinate.x - 0.5) / scale;\n" +
                "float soulY = 0.5 + (vCoordinate.y - 0.5) / scale;\n" +
                "vec2 soulTextureCoords = vec2(soulX, soulY);" +
                // 获取对应放大纹理坐标下的像素(颜色值rgba)
                "vec4 soulMask = texture2D(uSoulTexture, soulTextureCoords);" +

                "vec4 color = texture2D(uTexture, vCoordinate);" +

                "if (drawFbo == 0) {" +
                    // 颜色混合 默认颜色混合方程式 = mask * (1.0-alpha) + weakMask * alpha
                "    gl_FragColor = color * (1.0 - alpha) + soulMask * alpha;" +
                "} else {" +
                "   gl_FragColor = vec4(color.r, color.g, color.b, inAlpha);" +
                "}" +
            "}"
}

可以看到,顶点着色器 的代码和普通的渲染是一样的。

修改的都在 片元着色器中

简单分析一下:

i. 除了正常画面渲染需要的参数,另外新增了3个参数:

// 动画进度
uniform float progress;
// 是否绘制到FBO
uniform int drawFbo;
// 一帧固定的纹理
uniform sampler2D uSoulTexture;

ii. 跳过中间关于“灵魂”动画的部分,先看最后一个if/else

if (drawFbo == 0) {
    // 颜色混合 默认颜色混合方程式 = mask * (1.0-alpha) + weakMask * alpha
    gl_FragColor = color * (1.0 - alpha) + soulMask * alpha;" +
} else {
   gl_FragColor = vec4(color.r, color.g, color.b, inAlpha);
}

当一帧的时间超过500ms的时候,会重新获取一帧新的视频画面。

这里通过外部传进来的标记 drawFbo 如果为 1 时,渲染普通的画面,此时由于已经绑定了FBO,所以这一帧画面会渲染到FBO的 mSoulTextureID 上。

在下一次渲染的时候,这一帧纹理将传递给片元着色器的 uSoulTexture

iii. 中间的部分,关于“灵魂出窍”的核心。

// 透明度[0,0.4]
float alpha = 0.6 * (1.0 - progress);
// 缩放比例[1.0,1.5]
float scale = 1.0 + (1.5 - 1.0) * progress;

// 放大纹理坐标
float soulX = 0.5 + (vCoordinate.x - 0.5) / scale;
float soulY = 0.5 + (vCoordinate.y - 0.5) / scale;
vec2 soulTextureCoords = vec2(soulX, soulY);

// 获取对应放大纹理坐标下的像素(颜色值rgba)
vec4 soulMask = texture2D(uSoulTexture, soulTextureCoords);

首先,计算透明度。根据外面计算得到的 progress ,慢慢降低透明度,最大透明度为0.6。

然后,计算缩放后的坐标。随着 progress 的增加,scale 越大。最大放大1.5倍。利用 scale 分别计算 X,Y 的缩放。可以看到,scale 越大,**soulX/soulY** 反而更小。这是因为要达到放大的效果,当前要渲染的点,应该取更小的坐标对应的颜色(像素)。

最后,通过 soulX soulY ,到“灵魂”纹理 uSoulTexture 取到颜色。

iv. 混合底层正常画面和上层“灵魂”画面,采用常用的混合算法。

gl_FragColor = color * (1.0 - alpha) + soulMask * alpha;
5. 在页面中接入绘制器
class SoulPlayerActivity: AppCompatActivity() {
    val path = Environment.getExternalStorageDirectory().absolutePath + "/mvtest.mp4"
    lateinit var drawer: IDrawer

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_opengl_player)
        initRender()
    }

    private fun initRender() {
        // 使用“灵魂出窍”渲染器
        drawer = SoulVideoDrawer()
        drawer.setVideoSize(1920, 1080)
        drawer.getSurfaceTexture {
            initPlayer(Surface(it))
        }
        gl_surface.setEGLContextClientVersion(2)
        val render = SimpleRender()
        render.addDrawer(drawer)
        gl_surface.setRenderer(render)
    }

    private fun initPlayer(sf: Surface) {
        val threadPool = Executors.newFixedThreadPool(10)

        val videoDecoder = VideoDecoder(path, null, sf)
        threadPool.execute(videoDecoder)

        val audioDecoder = AudioDecoder(path)
        threadPool.execute(audioDecoder)

        videoDecoder.goOn()
        audioDecoder.goOn()
    }
}

使用和普通的使用OpenGL渲染器一模一样,不一样的只是把 VideoDrawer 换成 SoulVideoDrawer

最终得到了文章开头的效果:

四、总结

以上就是整个使用FBO的过程,使用也非常的简单。当然了,只关注了颜色附着的部分,另外的深度附着和模板附着有兴趣的可以自行探索学习。

可以看到,FBO为我们提供了一个实现视频处理的好方法,许多酷炫的效果得以实现,更多有趣的效果,等着大家去实现。

  • 参考文章

帧缓冲区对象(FBO) 实现渲染到纹理(Render To Texture/RTT)

DEPTH_TEST(深度缓冲测试)

Stencil_TEST(模板缓冲测试)

OpenGL ES入门:滤镜篇 - 缩放、灵魂出窍、抖动等

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、FBO与EGL的离屏渲染的区别
  • 二、FBO简介
  • 三、如何使用FBO
    • 1. 新建纹理
      • 2. 新建FrameBuffer
        • 3. 绑定FBO
          • 4. 解绑FBO
            • 5. 删除FBO
            • 三、使用FBO实现“灵魂出窍”滤镜
              • 1. 如何实现灵魂出窍
                • 2. 封装FBO工具
                  • 3. 在视频渲染器中,接入FBO
                    • 4. 实现灵魂出窍效果
                      • 5. 在页面中接入绘制器
                      • 四、总结
                      相关产品与服务
                      媒体处理
                      媒体处理(Media Processing Service,MPS)是一种云端音视频处理服务。基于腾讯多年音视频领域的深耕,为您提供极致的编码能力,大幅节约存储及带宽成本、实现全平台播放,同时提供视频截图、音视频增强、内容理解、内容审核等能力,满足您在各种场景下对视频的处理需求。
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档