专栏首页早起PythonPandas进阶修炼120题|第二期

Pandas进阶修炼120题|第二期

大家好,Pandas进阶修炼120题系列旨在用刷题的方式彻底玩转pandas中各种操作,本期为第二期,我们开始吧~

21

数据读取

题目:读取本地EXCEL数据

难度:⭐

答案

df = pd.read_excel('pandas120.xlsx')

本期部分习题与该数据相关

22

数据查看

题目:查看df数据前5行

难度:⭐

期望输出

答案

df.head()

23

数据计算

题目:将salary列数据转换为最大值与最小值的平均值

难度:⭐⭐⭐⭐

期望输出

答案

import re
for i in range(len(df)):
    str1 = df.ix[i,2]
    k = re.findall(r"\d+\.?\d*",str1)
    salary = ((int(k[0]) + int(k[1]))/2)*1000
    df.ix[i,2] = salary

24

数据分组

题目:将数据根据学历进行分组并计算平均薪资

难度:⭐⭐⭐

期望输出

education salary            
不限 19600.000000
大专 10000.000000
本科 19361.344538
硕士 20642.857143

答案

df.groupby('education').mean()

25

时间转换

题目:将createTime列时间转换为月-日

难度:⭐⭐⭐

期望输出

答案

for i in range(len(df)):
    df.ix[i,0] = df.ix[i,0].to_pydatetime().strftime("%m-%d")

26

数据查看

题目:查看索引、数据类型和内存信息

难度:⭐

期望输出

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 135 entries, 0 to 134
Data columns (total 4 columns):
createTime 135 non-null object
education 135 non-null object
salary 135 non-null int64
categories 135 non-null category
dtypes: category(1), int64(1), object(2)
memory usage: 3.5+ KB

答案

df.info()

27

数据查看

题目:查看数值型列的汇总统计

难度:⭐

答案

df.describe()

28

数据整理

题目:新增一列根据salary将数据分为三组

难度:⭐⭐⭐⭐

输入

期望输出

答案

bins = [0,5000, 20000, 50000]
group_names = ['低', '中', '高']
df['categories'] = pd.cut(df['salary'], bins, labels=group_names)

29

数据整理

题目:按照salary列对数据降序排列

难度:⭐⭐

答案

df.sort_values('salary', ascending=False)

30

数据提取

题目:取出第33行数据

难度:⭐⭐

答案

df.loc[33]

31

数据计算

题目:计算salary列的中位数

难度:⭐⭐

答案

np.median(df['salary'])

32

数据可视化

题目:绘制薪资水平频率分布直方图

难度:⭐⭐⭐

期望输出

答案

df.salary.plot(kind='hist')

33

数据可视化

题目:绘制薪资水平密度曲线

难度:⭐⭐⭐

期望输出

答案

df.salary.plot(kind='kde',xlim=(0,80000))

34

数据删除

题目:删除最后一列categories

难度:⭐

答案

del df['categories']

35

数据处理

题目:将df的第一列与第二列合并为新的一列

难度:⭐⭐

答案

df['test'] = df['education']+df['createTime']

36

数据处理

题目:将education列与salary列合并为新的一列

难度:⭐⭐⭐

备注:salary为int类型,操作与35题有所不同

答案

df["test1"] = df["salary"].map(str) + df['education']

37

数据计算

题目:计算salary最大值与最小值之差

难度:⭐⭐⭐

答案

df[['salary']].apply(lambda x: x.max() - x.min())

38

数据处理

题目:将第一行与最后一行拼接

难度:⭐⭐

答案

pd.concat([df[:1], df[-2:-1]])

39

数据处理

题目:将第8行数据添加至末尾

难度:⭐⭐

答案

df.append(df.iloc[7])

40

数据查看

题目:查看每列的数据类型

难度:⭐

期望结果

createTime object
education object
salary int64
test object
test1 object
dtype: object

答案

df.dtypes

41

数据处理

题目:将createTime列设置为索引

难度:⭐⭐

答案

df.set_index("createTime")

42

数据创建

题目:生成一个和df长度相同的随机数dataframe

难度:⭐⭐

答案

df1 = pd.DataFrame(pd.Series(np.random.randint(1, 10, 135)))

43

数据处理

题目:将上一题生成的dataframe与df合并

难度:⭐⭐

答案

df= pd.concat([df,df1],axis=1)

44

数据计算

题目:生成新的一列new为salary列减去之前生成随机数列

难度:⭐⭐

答案

df["new"] = df["salary"] - df[0]

45

缺失值处理

题目:检查数据中是否含有任何缺失值

难度:⭐⭐⭐

答案

df.isnull().values.any()

46

数据转换

题目:将salary列类型转换为浮点数

难度:⭐⭐⭐

答案

df['salary'].astype(np.float64)

47

数据计算

题目:计算salary大于10000的次数

难度:⭐⭐

答案

len(df[df['salary']>10000])

48

数据统计

题目:查看每种学历出现的次数

难度:⭐⭐⭐

期望输出

本科 119
硕士 7
不限 5
大专 4
Name: education, dtype: int64

答案

df.education.value_counts()

49

数据查看

题目:查看education列共有几种学历

难度:⭐⭐

答案

df['education'].nunique()

50

数据提取

题目:提取salary与new列的和大于60000的最后3行

难度:⭐⭐⭐⭐

期望输出

答案

df1 = df[['salary','new']]
rowsums = df1.apply(np.sum, axis=1)
res = df.iloc[np.where(rowsums > 60000)[0][-3:], :]

本文分享自微信公众号 - 早起Python(zaoqi-python),作者:刘早起早起

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-03-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Pandas进阶修炼120题|第一期

    在『Pandas进阶修炼120题』系列中,我们将对pandas中常用的操作以习题的形式发布。从读取数据到高级操作全部包含。如果你是新手,可以通过本系列完整学习使...

    刘早起
  • Pandas进阶修炼120题|完整版

    『Pandas进阶修炼120题』系列现已完结,我们对Pandas中常用的操作以习题的形式发布。从读取数据到高级操作全部包含,希望可以通过刷题的方式来完整学习pa...

    刘早起
  • 玩转数据处理120题|Pandas&R

    本文精心挑选在数据处理中常见的120种操作并整理成习题发布。并且每一题同时给出Pandas与R语言解法,同时针对部分习题给出了多种方法与注解。本系列一共涵盖了数...

    刘早起
  • Pandas进阶修炼120题|第二期

    以上就是Pandas进阶修炼120题|第二期的全部内容,数据可在后台回复pandas获取,完整的源码将会在稍晚些时候整理发布,如果对于某些题有其他解法欢迎点击下...

    TechFlow-承志
  • Pandas进阶修炼120题|第一期

    在『Pandas进阶修炼120题』系列中,我们将对pandas中常用的操作以习题的形式发布。从读取数据到高级操作全部包含。如果你是新手,可以通过本系列完整学习使...

    刘早起
  • Flutter 构建完整应用手册-持久化

    如果我们有一小部分我们想要保存的键值,我们可以使用shared_preferences插件。

    南郭先生
  • GAN的发展系列三(LapGAN、SRGAN)

    一、 LapGAN 论文:《Deep Generative Image Models using a Laplacian Pyramid of Adversar...

    Minerva
  • 使用docker测试静态网站

    98k
  • CRM资源操作on-fail参数详解

       首先明确,on-fail的默认值是stop,所以某些情况下可以不用配置。

    党志强
  • 关于分词的一些思考

    我发现分词问题并不存在适用于所有领域的通用解决方案,之前我一直以为给词库里加一些专业词汇能够解决一些特定专业的问题,现在一想自己还是太naive了。举两个例子:...

    云时之间

扫码关注云+社区

领取腾讯云代金券