专栏首页博文视点Broadview大数据与传统数据

大数据与传统数据

小编说:在这个人人都说大数据的时代,许多人对大数据的印象只是停留在仰望的阶段,其实大数据没人们说得那么神奇、玄乎或者是无所不能,今天我们就以传统数据作为比对,看看大数据究竟有什么特点让其处于时代的浪潮之巅。 本文选自《从1开始——数据分析师成长之路》

大数据与传统数据相比的主要特点可以概括为:数据量“大”、数据类型“复杂”、数据价值“无限”。

数据量大十分好理解,以前我们存储数据使用的单位是 KB,一个Excel表格也就几十到几百KB,现在我们经常说到GB甚至是TB乃至PB的数据量级,它们的数量关系如下所示。

1MB=1024KB

1GB=1024MB

1TB=1024GB

1PB=1024TB

更直观一点,1KB相当于512个汉字,1MB就相当于六本红楼梦的字数……而淘宝网在2015年3月每天大约能产生7TB的数据量,相当于4000万本红楼梦的数据量,而中国最大的图书馆中国国家图书馆的藏书量是3000万册。由此看来,我们的大数据着实是数据量巨大了。而只说能够产生如此大量数据的原因有哪些呢?我们不妨从数据获取的方式、数据传输的方式和数据存储的方式来探讨数据量大的这个问题。

数据获取方式的质变是大数据能够产生的核心要素。传统的数据获取方式多是以人工的方式获取数据,最大的特点是手动输入数据,曾有一段时间,超市是通过要求收银员键入用户特征来采集用户数据的,键盘的样子大体上会是如图3-3所示的造型。

超市通过这样的方式来收集用户的数据,对收集的数据进行分析,来对用户画像与人群定位。试想在超市每天如此大的接待量情况下,收银员能否保证数据录入的准确性呢?与此同时,通过人工输入的方式每天能够采集多少数据呢?类似的这种键盘记录的方式还有许多人工录入数据的方式不再一一举例,传统记录数据的方式必定只能是小范围的,少量的和准确度欠佳的。而现在的数据获取方式大多是通过URL传输和API接口,大体上数据获取的方式有这样几类:爬虫抓取、用户留存、用户上传、数据交易和数据共享。

自有数据与外部数据是数据获取的两个主要渠道。在自有数据中,我们可以通过一些爬虫软件有目的的定向爬取,比如爬取一批用户的微博关注数据,某汽车论坛的各型号汽车的报价等。用户留存多是用户使用了公司的产品或是业务,用户在使用产品或是业务中会留下一系列行为数据,这个构成了我们的数据库主体,通常的数据分析多基于用户留存的数据。用户上传数据诸如持证自拍照、通讯录、历史通话详单等需要用户主动授权提供的数据,这类数据往往是业务运作中的关键数据。相较于自有数据获取,外部数据的获取方式简单许多,绝大多数都是基于API接口的传输,也有少量的数据采用线下交易以表格或文件的形式线下传输。此类数据要么采用明码标价一条数据多少钱,或是进行数据共享,交易双方承诺数据共享,谋求共同发展。

至此,我们看到新时代的数据获取形式相较于传统数据获取的方式更加多元、更加高效。

同样的大数据与传统数据的传输方式也截然不同。传统数据要么以线下传统文件的方式,要么以邮件或是第三方软件进行传输,而随着API接口的成熟和普及就好像以前的手机充电接口,从千奇百怪、五花八门到今天的两大主要类别:iPhone系统与Android系统。API接口也随着时代的发展逐渐标准化、统一化,一个程序员只用两天的时间就能完成一个API接口开发,而API接口传输数据的效率更是能够达到毫秒级。

在数据存储方面,大数据的存储环境相较于传统数据的存储已经跃升了好几个数量级。犹记得十多年前软盘还非常高级,存储量达到20MB的软盘已然很贵,更别说U盘和移动硬盘了。

大数据与传统数据的另一个显著差异是数据类型的丰富。传统数据更注重于对象的描述,而大数据更倾向与对数据过程的记录。为了便于大家理解,下面简单的举个例子说明传统数据与大数据的记录方式有何区别。

传统数据的记录方式如下表。

大数据的记录方式如下表。

很明显地看到,传统数据和大数据记录数据的最大区别是大数据不仅对对象进行了描述,还加入了时间、地点等维度,这样的数据记录的是一个过程,从小明进入餐厅之前开始一直到小明离开餐厅,这整个过程都会被记录下来。而传统数据的记录方式更倾向于对结果的简单描述。

当然,大数据能记录的用户就餐数据远不局限于上述所列的字段,理想状况的大数据监控甚至会记录用户吃饭的方式、吃饭时的行为、吃饭时的面部表情等一系列数据,这些数据反映了用户对就餐环境的感受,对餐食口味的反应,进一步可以用来改进就餐环境、食物口味,给出点餐建议。

大数据与传统数据的核心差异在于其价值的不可估量。传统数据的价值体现在信息传递与表征,是对现象的描述与反馈,让人通过数据去了解数据。而大数据是对现象发生过程的全记录,通过数据不仅能够了解对象,还能分析对象,掌握对象运作的规律,挖掘对象内部的结构与特点,甚至能了解对象自己都不知道的信息。

诸如某百科对一个人的描述与概括,记录了这个人的身高、体重、出生年月、兴趣爱好、日常活动、亲朋好友等数据,这些算是传统数据,通过这些传统数据你能知道和认识这个人。如果用大数据的方式来记录一个人,那就可以详细到他几点起床、睡眠质量、身体状况、每个时间点在做什么事等一系列过程数据,通过这些过程数据我们不仅知道和认识这个人,还能知道他的习惯性格,甚至能挖掘出隐藏在生活习惯中的情绪与内心活动等信息。这些都是传统数据所无法体现的,也是大数据承载信息的丰富之处,在丰富的信息背后隐藏着巨大的价值,这些价值甚至能帮助人们达到“所思即所得”的境界。

大数据价值的特殊之处就在于它的可挖掘性,同样的一堆数据,不同的人能得到不同层次的东西。就好像同样见一个人,有些人只看他的外貌好不好看,有些人能从他的表情中读出心理活动,从眼神中看出阅历,从衣着打扮中读出品味,从鞋子上读出生活习惯。而这些深层次的非表象的内容需要技巧与实力去挖掘出来,这就是我们说的数据分析与数据挖掘。

本文分享自微信公众号 - 博文视点Broadview(bvbooks),作者:博文视点

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-01-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 五步法建设你的数据中台

    数据中台是当下非常热门的话题,可以解决企业重复造轮子的问题。虽然数据中台在互联网企业中已经有了多年的实践,但是对于传统企业来说还是一个比较新的话题。

    博文视点Broadview
  • 【数据思维丨主题周】从智能ABC到搜狗,探寻数据驱动的价值

    不论2008 年Google 推出的流感预测产品,还是Prada旗舰店中每件衣服上的RFID码,数据能够给社会、企业带来商业模式上的优化,以及商业自动化的突破。...

    博文视点Broadview
  • 伪数据科学家 VS 真数据科学家

    R语言编程跟伪数据科学为何扯上了关系?R是一种有20多年历史的开源统计编程语言及编译环境,是商业化产品S+的后继者。R一直以来都局限于内存数据处理,在统计圈子里...

    博文视点Broadview
  • 【案例】浅谈医学大数据是怎么回事?

    编者按:本文作者陈遵秋,美国俄勒冈州,健康科技大学,公共卫生预防系,美国统计协会认证统计分析师;陈漪伊,美国俄勒冈州,健康科技大学,公共卫生预防系,生物统计助理...

    小莹莹
  • 网站安全公司-数据安全风险分析

    现代信息化系统越来越普遍,但对于数据安全方面却有很多问题,数据完整性风险不仅影响信息的有效性,还影响信息正确性的保证。一些政府条例特别注重确保数据的准确性。如果...

    技术分享达人
  • 大数据社会的十三大具体应用场景

      美国NASA如何能提前预知各种天文奇观?风力发电机和创业者开店如何选址?如何才能准确预测并对气象灾害进行预警?包括在未来的城镇化建设过程中,如何打造智能城...

    腾讯研究院
  • #后疫情时代的新思考#“数 ”战“数”决将成为各行各业的普遍趋势丨数据猿公益策划

    2020年初,突如其来的新冠疫情打乱了正常的社会节奏,全国上下集体投入到了疫情防控攻坚战之中。

    数据猿
  • 安全的陷阱:警惕大数据壁垒化危害

      随着人们对大数据价值理解的深入,更多的公司将自身领域拓展至大数据层面。然而与高速发展相对应的是,数据管理行业急需的一系列数据使用标准及数据守则并没有被建立...

    腾讯研究院
  • 元数据的生死时速

    公司经营分析会提到家庭市场的重要性,我就问负责家庭模型的同事:去年做的家庭结构标签用得怎么样?然后同事给我拉出了下面这张表。

    用户1564362
  • 业界 | 苹果确认收购了一家斯坦福血统的暗数据分析公司

    AI科技评论了解,苹果近日收购了一家数据挖掘和机器学习公司LATTICE(网址Lattice.io)。这家公司的前身是斯坦福大学计算机学院的研究项目DeepDi...

    AI科技评论

扫码关注云+社区

领取腾讯云代金券