专栏首页最新医学影像技术医学图像处理教程(三)——医学图像增强算法

医学图像处理教程(三)——医学图像增强算法

今天将给大家分享医学图像常见图像增强算法。

1、对数变换

图像对数变换首先将图像从SimpleITK图像数据转成Numpy矩阵数据,然后采用Numpy的log1p()函数来计算数据的log(1+x)变换,由于1+x不能小于零,因此这里我们使用图像减去图像的最小值来计算对数变换结果。

image = sitk.ReadImage("srcdicom.mha")
np_image = sitk.GetArrayFromImage(image)
# log transform
np_log_image = np.log1p(np_image - np.min(np_image))
log_image = sitk.GetImageFromArray(np_log_image)
log_image.SetOrigin(image.GetOrigin())
log_image.SetDirection(image.GetDirection())
log_image.SetSpacing(image.GetSpacing())
sitk.WriteImage(log_image, "log_image.mha")

2、幂次变换

图像对数变换首先将图像从SimpleITK图像数据转成Numpy矩阵数据,然后采用Numpy的power()函数来计算数据的幂次变换,为了防止出现计算值溢出错误,因此这里我们使用图像减去图像均值再除以图像方差来计算图像幂次变换结果,,在这里我们计算图像3次幂变换。

# power transform
np_image_clone1 = np_image.copy()
np_image_clone1 = (np_image_clone1 - np_image.mean()) / np_image.std()
np_power_image = np.power(np_image_clone1, 3)
power_image = sitk.GetImageFromArray(np_power_image)
power_image.SetOrigin(image.GetOrigin())
power_image.SetDirection(image.GetDirection())
power_image.SetSpacing(image.GetSpacing())
sitk.WriteImage(power_image, "power_image.mha")

3、指数变换

图像指数变换首先将图像从SimpleITK图像数据转成Numpy矩阵数据,然后采用Numpy的exp()函数来计算数据的指数变换,为了防止出现计算值溢出错误,因此这里我们使用图像减去图像均值再除以图像方差来计算图像指数变换结果。

# exp transform
np_image_clone = np_image.copy()
np_image_clone = (np_image_clone - np_image.mean()) / np_image.std()
np_exp_image = np.exp(np_image_clone)
exp_image = sitk.GetImageFromArray(np_exp_image)
exp_image.SetOrigin(image.GetOrigin())
exp_image.SetDirection(image.GetDirection())
exp_image.SetSpacing(image.GetSpacing())
sitk.WriteImage(exp_image, "exp_image.mha")

4、直方图均衡化

我们使用函数AdativeHistogramEqualizationImageFilter()函数来实现图像的直方图均衡化,这个类函数需要人为设置三个参数:Alpha,Beta,Radius,其中Alpha参数是用来控制结果相对于经典直方图均衡化方法结果的相似程度,Beta参数用来控制图像锐化程度,Radius用来控制直方图统计时的区域大小。

# Histogram equalization
sitk_hisequal = sitk.AdaptiveHistogramEqualizationImageFilter()
sitk_hisequal.SetAlpha(0.9)
sitk_hisequal.SetBeta(0.9)
sitk_hisequal.SetRadius(3)
sitk_hisequal = sitk_hisequal.Execute(image)
sitk.WriteImage(sitk_hisequal, "sitk_hisequal.mha")

5、拉普拉斯图像锐化

我们使用LaplacianSharpeningImageFilter()函数来对图像进行拉普拉斯锐化。参数设置也比较简单,是否使用输入图像的Spacing来进行计算,在这里我们为了保持一致性,设置使用输入图像的Spacing。

# laplace sharpen
sitk_laplaciansharp = sitk.LaplacianSharpeningImageFilter()
sitk_laplaciansharp.UseImageSpacingOn()
sitk_laplaciansharp = sitk_laplaciansharp.Execute(image)
sitk.WriteImage(sitk_laplaciansharp, "sitk_laplaciansharp.mha")

本文分享自微信公众号 - 最新医学影像技术(MedicalHealthNews),作者:最新医学影像技术

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-04-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 医学图像处理教程(二)——医学图像读取,存储和不同对象互相转换

    今天将给大家分享医学图像读取,包括dicom图像和非dicom图像,图像的存储以及修改图像信息后产生的变化结果,最后再介绍如何将SimpleITK的图像数据与N...

    用户7498388
  • Tensorflow入门教程(二十八)——超分辨生成对抗网络(SRGAN)

    前面的文章给大家分享了生成对抗网络来生成图像,初次见识到生成对抗网络的强大,我们期望可以用它来做更多的事情,今天我将用生成对抗网络来做超分辨成像。

    用户7498388
  • Tensorflow入门教程(六)——执行顺序和控制依赖关系

    上一篇我介绍了如何使用Tensorflow的重载操作。这一篇我会说一说Tensorflow中执行顺序和控制依赖关系的理解。

    用户7498388
  • 深度学习之神经网络(反向传播算法)(三)

    神经网络最开始是受生物神经系统的启发,为了模拟生物神经系统而出现的。大脑最基本的计算单元是神经元,人类的神经系统中大概有86亿的神经元,它们之间通过1014-1...

    李小白是一只喵
  • 小白也能看懂的BP反向传播算法之Further into Backpropagation

    在上一篇文章小白也能看懂的BP反向传播算法之Let's practice Backpropagation,我们计算了一个带sigmoid函数的嵌套网络的反向传播...

    desperate633
  • 机器学习该怎么入门?

    可汗学院,是由孟加拉裔美国人萨尔曼·可汗创立的一家教育性非营利组织,主旨在于利用网络影片进行免费授课。

    猴子数据分析
  • bootstrap3 组件

    <span class="input-group-addon"><span class="glyphicon glyphicon-search"></span>...

    用户5760343
  • 用python进行简单的画图操作

    我用python的matplotlib模块进行简单的画图操作,作为入门参考,下面直接上代码:

    py3study
  • 4-10 webpack 与浏览器缓存(caching)

    浏览器在加载资源时,为了提高效率,会使用一定的缓存策略,比如强缓存,与协商缓存,那么如何保证在资源发布以后浏览器能拿到最新的资源而不是缓存呢?

    love丁酥酥
  • 一起学Excel专业开发15:用户自定义函数与函数库加载宏

    使用VBA编写用户自定义函数,不仅可以在程序中进行调用,还可以像Excel内置的工作表函数一样,在工作表公式中使用。例如下面的用户自定义函数GetNum:

    fanjy

扫码关注云+社区

领取腾讯云代金券