前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >还记得那场关于“分布式锁”的经典论战吗?

还记得那场关于“分布式锁”的经典论战吗?

作者头像
春哥大魔王
发布2020-07-02 15:19:18
1K0
发布2020-07-02 15:19:18
举报

锁的目的在于对于共享资源访问的一个互斥控制,单机场景下我们可以基于jvm的锁进行实现就ok了,分布式场景下的实现方案有很多,有人可能会想到基于redis实现。

有关Redis分布式锁的文章可谓多如牛毛了,这些文章的思路大体相近,给出的实现算法也看似合乎逻辑,但当我们着手去实现它们的时候,却发现如果你越是仔细推敲,疑虑也就越来越多。

关于Redis分布式锁的安全性问题,在分布式系统专家Martin Kleppmann和Redis的作者antirez之间就发生过一场争论。

通过这篇文章你会看到程序员较真的一面,两个分布式领域大佬,为了一点“小事”吵得不可开交,?。但是这样深挖细节可以让大家学到很多,当然两个大佬更是不打不相识吧,无形中给大家普及了很多分布式领域的知识。

这场争论的大概过程是这样的:

为了规范各家对基于Redis的分布式锁的实现,Redis的作者提出了一个更安全的实现,叫做Redlock。

有一天,Martin Kleppmann写了一篇blog,分析了Redlock在安全性上存在的一些问题。

然后Redis的作者立即写了一篇blog来反驳Martin的分析。但Martin表示仍然坚持原来的观点。

随后,这个问题在Twitter和Hacker News上引发了激烈的讨论,很多分布式系统的专家都参与其中。

亲手实现过Redis Cluster这样一个复杂系统的antirez,足以算得上分布式领域的一名专家了。但对于由分布式锁引发的一系列问题的分析中,不同的专家却能得出迥异的结论。

从中我们可以窥见分布式系统相关的问题具有何等的复杂性。实际上,在分布式系统的设计中经常发生的事情是:许多想法初看起来毫无破绽,而一旦详加考量,却发现不是那么天衣无缝。

之前公众号写过一篇关于分布式锁实现的文章,感兴趣的可以看下:分布式锁实现

首先说下在redis生态下可以实现分布式锁的方式,由于原有的一些redis实现方案都经不住推敲,单机的方案可以实现一定的数据一致性控制,但是可用性得不到保障。集群的可用性有了,但是数据复制是异步的,一致性又得不到保障。

于是在数据可靠性和可用性两个角度取舍中,redis作者antirez提出了一种实现:redlock,也叫“红锁”。算是对于redis生态下分布式锁实现的一个规范吧。

  • https://redis.io/topics/distlock

redlock的实现是基于多个redis节点的(通常是5),是多个master节点,这样作者认为就不存在数据异步复制导致的数据一致性问题了。

客户端对多个节点发送set NX命令,如果set命令执行成功,则客户端获取锁了,可以进行共享资源进行访问了,如果命令执行失败则获取锁失败。

- value是一个随机字符串,保证了唯一性

- NX 表示当key不存在才set成功,保证了只有第一个访问请求的客户端可以获取锁

- 超时时间,业务上可选的超时时间,需要注意这个超时时间包含了去各个master节点进行set命令操作的时间,所以锁本身的时间是小于这个时间的

之后进行锁释放。

对于一个分布式锁来说,需要设置一个合理超时时间,否则获取锁之后,客户端崩溃,或是网络分区,这个锁就没法释放了。

我们知道在redis中多个命令的执行不是原子性的,想要原子性,一般通过lua脚本包起来进行实现,所以上面获取锁的命令和释放锁的命令最好用lua脚本实现。

set的随机字符串的目的在于获取锁和释放锁的是同一把钥匙,如果set一个固定值,不一定就被哪个客户端给delete了。

其实我自己在看redlock实现过程中,最关心的是这个超时时间的设置,因为客户端需要“依次顺序”的去多个master节点进行set操作吗,这个过程本身是存在耗时的,所以最后落到redis的key上的超时时间其实并不等于客户端想要的超时时间。

如果时间太短,锁可能在客户端未完成操作之前过期,失去了保护。如果设置过长,如果释放锁失败,会导致其他客户端长时间获取不到锁,无法继续工作。

客户端依次访问redis节点,如果发现超时或是失败,则继续访问下一个。这个超时时间的计算逻辑是:

用当前时间减去第1步记录的时间。如果客户端从大多数Redis节点(>= N/2+1)成功获取到了锁,并且获取锁总共消耗的时间没有超过锁的有效时间(lock validity time),那么这时客户端才认为最终获取锁成功;否则,认为最终获取锁失败。

如果最终获取锁成功了,那么这个锁的有效时间应该重新计算,它等于最初的锁的有效时间减去访问半数+1个节点的后计算出来的获取锁消耗的时间。

如果最终获取锁失败了(可能由于获取到锁的Redis节点个数少于N/2+1,或者整个获取锁的过程消耗的时间超过了锁的最初有效时间),那么客户端应该立即向所有Redis节点发起释放锁的操作(即前面介绍的Redis Lua脚本)。

由于N个Redis节点中的大多数能正常工作就能保证Redlock正常工作,因此理论上它的可用性更高。

虽然redlock解决了redis可用性问题,但是肉眼看上去这个获取锁的周期很容易被其他请求抢占啊,当然由于value是随机数,所以这个可能性就不存在了。

我们考虑下redis即诶单宕机之后对锁的安全性有什么影响:

假设一共有5个Redis节点:A, B, C, D, E。设想发生了如下的事件序列:

  1. 客户端1成功锁住了A, B, C,获取锁成功(但D和E没有锁住)。
  2. 节点C崩溃重启了,但客户端1在C上加的锁没有持久化下来,丢失了。
  3. 节点C重启后,客户端2锁住了C, D, E,获取锁成功。

这样,客户端1和客户端2同时获得了锁(针对同一资源)。

我们结合redis持久化机制考虑下这个问题。

在默认情况下,Redis的AOF持久化方式是每秒写一次磁盘(即执行fsync),因此最坏情况下可能丢失1秒的数据。为了尽可能不丢数据,Redis允许设置成每次修改数据都进行fsync,但这会降低性能。

当然,即使执行了fsync也仍然有可能丢失数据(这取决于系统而不是Redis的实现)。所以,上面分析的由于节点重启引发的锁失效问题,总是有可能出现的。

为了应对这一问题,antirez又提出了延迟重启(delayed restarts)的概念。也就是说,一个节点崩溃后,先不立即重启它,而是等待一段时间再重启,这段时间应该大于锁的有效时间(lock validity time)。这样的话,这个节点在重启前所参与的锁都会过期,它在重启后就不会对现有的锁造成影响。

哈哈,这里我已经开始有些同情antirez老哥了,这分明是出现问题在解决问题啊,就不能跑到问题前面去思考啊,要是为了实现一个分布式锁,单独搞一堆这样的事情,我早就换方案了。

关于Redlock还有一点细节值得拿出来分析一下:在最后释放锁的时候,antirez在算法描述中特别强调,客户端应该向所有Redis节点发起释放锁的操作。也就是说,即使当时向某个节点获取锁没有成功,在释放锁的时候也不应该漏掉这个节点。

这是为什么呢?设想这样一种情况,客户端发给某个Redis节点的获取锁的请求成功到达了该Redis节点,这个节点也成功执行了SET操作,但是它返回给客户端的响应包却丢失了。这在客户端看来,获取锁的请求由于超时而失败了,但在Redis这边看来,加锁已经成功了。因此,释放锁的时候,客户端也应该对当时获取锁失败的那些Redis节点同样发起请求。

实际上,这种情况在异步通信模型中是有可能发生的:客户端向服务器通信是正常的,但反方向却是有问题的。

但是你又怎么保证释放锁的请求一定会被redis节点执行了呢?

所以可见分布式场景下,想要一次性解决数据一致性问题基本是不可能了,除非你牺牲可用性,诶,好像要说CAP了。

还有一个疑问,如果客户端长期阻塞导致锁过期,那么它接下来访问共享资源就不安全了(没有了锁的保护)。这个问题在Redlock中怎么解决呢?

并没有解决,因为锁释放完全靠超时时间了。

成功获取了锁之后,如果由于获取锁的过程消耗了较长时间,重新计算出来的剩余的锁有效时间很短了,那么我们还来得及去完成共享资源访问吗?如果我们认为太短,是不是应该立即进行锁的释放操作?那到底多短才算呢?又是一个选择难题。

Martin在分布式锁角度瞧不上redis的文章说了很多分布式系统基础性的问题,主要围绕于分布式计算及异步模型:

  • 前半部分,与Redlock无关。Martin指出,即使我们拥有一个完美实现的分布式锁(带自动过期功能),在没有共享资源参与进来提供某种fencing机制的前提下,我们仍然不可能获得足够的安全性。
  • 后半部分,是对Redlock本身的批评。Martin指出,由于Redlock本质上是建立在一个同步模型之上,对系统的记时假设(timing assumption)有很强的要求,因此本身的安全性是不够的。

分布式锁时序图:

在上面的时序图中,假设锁服务本身是没有问题的,它总是能保证任一时刻最多只有一个客户端获得锁。

上图中出现的lease这个词可以暂且认为就等同于一个带有自动过期功能的锁。客户端1在获得锁之后发生了很长时间的GC pause,在此期间,它获得的锁过期了,而客户端2获得了锁。

当客户端1从GC pause中恢复过来的时候,它不知道自己持有的锁已经过期了,它依然向共享资源(上图中是一个存储服务)发起了写数据请求,而这时锁实际上被客户端2持有,因此两个客户端的写请求就有可能冲突(锁的互斥作用失效了)。

初看上去,有人可能会说,既然客户端1从GC pause中恢复过来以后不知道自己持有的锁已经过期了,那么它可以在访问共享资源之前先判断一下锁是否过期。但仔细想想,这丝毫也没有帮助。因为GC pause可能发生在任意时刻,也许恰好在判断完之后。

也有人会说,如果客户端使用没有GC的语言来实现,是不是就没有这个问题呢?Martin指出,系统环境太复杂,仍然有很多原因导致进程的pause,比如虚存造成的缺页故障(page fault),再比如CPU资源的竞争。即使不考虑进程pause的情况,网络延迟也仍然会造成类似的结果。

总结起来就是说,即使锁服务本身是没有问题的,而仅仅是客户端有长时间的pause或网络延迟,仍然会造成两个客户端同时访问共享资源的冲突情况发生。而这种情况其实就是我们在前面已经提出来的“客户端长期阻塞导致锁过期”的那个疑问。

你看数据一致性处理多么复制,想一下还是kafka和raft实现的简单,用任期做控制,业务上的损失老子不管,leader就是这么强势。

针对于以上问题。Martin给出了一种方法,称为fencing token。fencing token是一个单调递增的数字,当客户端成功获取锁的时候它随同锁一起返回给客户端。而客户端访问共享资源的时候带着这个fencing token,这样提供共享资源的服务就能根据它进行检查,拒绝掉延迟到来的访问请求(避免了冲突)。如下图:

在上图中,客户端1先获取到的锁,因此有一个较小的fencing token,等于33,而客户端2后获取到的锁,有一个较大的fencing token,等于34。客户端1从GC pause中恢复过来之后,依然是向存储服务发送访问请求,但是带了fencing token = 33。

存储服务发现它之前已经处理过34的请求,所以会拒绝掉这次33的请求。这样就避免了冲突。

记住上面这个方案,这个在很多分布式系统里面已经采纳了这种方案,主要原因是简单且可靠。

Martin的文章的后半部分。

Martin在文中构造了一些事件序列,能够让Redlock失效(两个客户端同时持有锁)。为了说明Redlock对系统记时(timing)的过分依赖,他首先给出了下面的一个例子(还是假设有5个Redis节点A, B, C, D, E):

  1. 客户端1从Redis节点A, B, C成功获取了锁(多数节点)。由于网络问题,与D和E通信失败。
  2. 节点C上的时钟发生了向前跳跃,导致它上面维护的锁快速过期。
  3. 客户端2从Redis节点C, D, E成功获取了同一个资源的锁(多数节点)。
  4. 客户端1和客户端2现在都认为自己持有了锁。

看到这里,不得不给Martin点个赞,确实是老谋深算,把分布式下的经典时钟问题拿出来了。

上面这种情况之所以有可能发生,本质上是因为Redlock的安全性(safety property)对系统的时钟有比较强的依赖,一旦系统的时钟变得不准确,算法的安全性也就保证不了了。

Martin在这里其实是要指出分布式算法研究中的一些基础性问题,或者说一些常识问题,即好的分布式算法应该基于异步模型(asynchronous model),算法的安全性不应该依赖于任何记时假设(timing assumption)。

在异步模型中:进程可能pause任意长的时间,消息可能在网络中延迟任意长的时间,甚至丢失,系统时钟也可能以任意方式出错。

一个好的分布式算法,这些因素不应该影响它的安全性(safety property),只可能影响到它的活性(liveness property),也就是说,即使在非常极端的情况下(比如系统时钟严重错误),算法顶多是不能在有限的时间内给出结果而已,而不应该给出错误的结果。这样的算法在现实中是存在的,像比较著名的Paxos,或Raft。但显然按这个标准的话,Redlock的安全性级别是达不到的。

这里又引出来了那句老话:分布式场景下所有对于强一致性的实现,都是paxos的变种。

也就是说,如果分布式场景下实现看不到paxos的影子的话,你的实现就有很多值得被挑战的地方。你在想想CAP。

随后,Martin觉得前面这个时钟跳跃的例子还不够,又给出了一个由客户端GC pause引发Redlock失效的例子。如下:

  1. 客户端1向Redis节点A, B, C, D, E发起锁请求。
  2. 各个Redis节点已经把请求结果返回给了客户端1,但客户端1在收到请求结果之前进入了长时间的GC pause。
  3. 在所有的Redis节点上,锁过期了。
  4. 客户端2在A, B, C, D, E上获取到了锁。
  5. 客户端1从GC pause从恢复,收到了前面第2步来自各个Redis节点的请求结果。客户端1认为自己成功获取到了锁。
  6. 客户端1和客户端2现在都认为自己持有了锁。

Martin给出的这个例子其实有点小问题。在Redlock算法中,客户端在完成向各个Redis节点的获取锁的请求之后,会计算这个过程消耗的时间,然后检查是不是超过了锁的有效时间(lock validity time)。

客户端1从GC pause中恢复过来以后,它会通过这个检查发现锁已经过期了,不会再认为自己成功获取到锁了。随后antirez在他的反驳文章中就指出来了这个问题,但Martin认为这个细节对Redlock整体的安全性没有本质的影响。

这个例子跟文章前半部分分析通用的分布式锁时给出的GC pause的时序图是基本一样的,只不过那里的GC pause发生在客户端1获得了锁之后,而这里的GC pause发生在客户端1获得锁之前。

但两个例子的侧重点不太一样。Martin构造这里的这个例子,是为了强调在一个分布式的异步环境下,长时间的GC pause或消息延迟(上面这个例子中,把GC pause换成Redis节点和客户端1之间的消息延迟,逻辑不变),会让客户端获得一个已经过期的锁。

从客户端1的角度看,Redlock的安全性被打破了,因为客户端1收到锁的时候,这个锁已经失效了,而Redlock同时还把这个锁分配给了客户端2。

换句话说,Redis服务器在把锁分发给客户端的途中,锁就过期了,但又没有有效的机制让客户端明确知道这个问题。而在之前的那个例子中,客户端1收到锁的时候锁还是有效的,锁服务本身的安全性可以认为没有被打破,后面虽然也出了问题,但问题是出在客户端1和共享资源服务器之间的交互上。

在Martin的这篇文章中,还有一个很有见地的观点,就是对锁的用途的区分。他把锁的用途分为两种:

  • 为了效率(efficiency),协调各个客户端避免做重复的工作。即使锁偶尔失效了,只是可能把某些操作多做一遍而已,不会产生其它的不良后果。比如重复发送了一封同样的email。
  • 为了正确性(correctness)。在任何情况下都不允许锁失效的情况发生,因为一旦发生,就可能意味着数据不一致(inconsistency),数据丢失,文件损坏,或者其它严重的问题。

这里划重点啊,人家再问你关于分布式锁的问题,首先把这个给他甩出去,不知道这两句话的人,根本不配问分布式锁的问题和实现。

最后,Martin得出了如下的结论:

  • 如果是为了效率(efficiency)而使用分布式锁,允许锁的偶尔失效,那么使用单Redis节点的锁方案就足够了,简单而且效率高。Redlock则是个过重的实现(heavyweight)。
  • 如果是为了正确性(correctness)在很严肃的场合使用分布式锁,那么不要使用Redlock。它不是建立在异步模型上的一个足够强的算法,它对于系统模型的假设中包含很多危险的成分(对于timing)。而且,它没有一个机制能够提供fencing token。那应该使用什么技术呢?Martin认为,应该考虑类似Zookeeper的方案,或者支持事务的数据库。

Martin对Redlock算法的形容是:

neither fish nor fowl (非驴非马)?

antirez继续战斗。

antirez认为,Martin的文章对于Redlock的批评可以概括为两个方面(与Martin文章的前后两部分对应):

  • 带有自动过期功能的分布式锁,必须提供某种fencing机制来保证对共享资源的真正的互斥保护。Redlock提供不了这样一种机制。
  • Redlock构建在一个不够安全的系统模型之上。它对于系统的记时假设(timing assumption)有比较强的要求,而这些要求在现实的系统中是无法保证的。

antirez对这两方面分别进行了反驳。

首先,关于fencing机制。antirez对于Martin的这种论证方式提出了质疑:既然在锁失效的情况下已经存在一种fencing机制能继续保持资源的互斥访问了,那为什么还要使用一个分布式锁并且还要求它提供那么强的安全性保证呢?即使退一步讲,Redlock虽然提供不了Martin所讲的递增的fencing token,但利用Redlock产生的随机字符串(my_random_value)可以达到同样的效果。这个随机字符串虽然不是递增的,但却是唯一的,可以称之为unique token。 当开始和共享资源交互的时候,我们将它的状态设置成“<token>”,然后仅在token没改变的情况下我们才执行“读取-修改-写回”操作。) “Check and Set”应该就是我们平常听到过的CAS操作了,但它如何在这个场景下工作,antirez并没有展开说。 翻译一下可以这样理解:假设你要修改资源X,那么遵循下面的伪码所定义的步骤。

  1. 先设置X.currlock = token。
  2. 读出资源X(包括它的值和附带的X.currlock)。
  3. 按照"write-if-currlock == token"的逻辑,修改资源X的值。意思是说,如果对X进行修改的时候,X.currlock仍然和当初设置进去的token相等,那么才进行修改;如果这时X.currlock已经是其它值了,那么说明有另外一方也在试图进行修改操作,那么放弃当前的修改,从而避免冲突。

在Martin认为Redlock会失效的情况主要有三种:

  • 时钟发生跳跃。
  • 长时间的GC pause。
  • 长时间的网络延迟。

antirez肯定意识到了这三种情况对Redlock最致命的其实是第一点:时钟发生跳跃。 这种情况一旦发生,Redlock是没法正常工作的。而对于后两种情况来说,Redlock在当初设计的时候已经考虑到了,对它们引起的后果有一定的免疫力。所以,antirez接下来集中精力来说明通过恰当的运维,完全可以避免时钟发生大的跳动,而Redlock对于时钟的要求在现实系统中是完全可以满足的。

Martin在提到时钟跳跃的时候,举了两个可能造成时钟跳跃的具体例子:

  • 系统管理员手动修改了时钟。
  • 从NTP服务收到了一个大的时钟更新事件。

antirez反驳说:

  • 手动修改时钟这种人为原因,不要那么做就是了。否则的话,如果有人手动修改Raft协议的持久化日志,那么就算是Raft协议它也没法正常工作了。
  • 使用一个不会进行“跳跃”式调整系统时钟的ntpd程序(可能是通过恰当的配置),对于时钟的修改通过多次微小的调整来完成。

这里我已经感觉到antirez要骂街的意思了?。

而Redlock对时钟的要求,并不需要完全精确,它只需要时钟差不多精确就可以了。比如,要记时5秒,但可能实际记了4.5秒,然后又记了5.5秒,有一定的误差。不过只要误差不超过一定范围,这对Redlock不会产生影响。

antirez认为呢,像这样对时钟精度并不是很高的要求,在实际环境中是完全合理的。

其实这里antirez已经承认,基于redis实现分布式锁,不能起到“精确控制”的目的了。 在Martin给出的那个由客户端GC pause引发Redlock失效的例子中,这个GC pause引发的后果相当于在锁服务器和客户端之间发生了长时间的消息延迟。Redlock对于这个情况是能处理的。

回想一下Redlock算法的具体过程,它使用起来的过程大体可以分成5步:

  1. 获取当前时间。
  2. 完成获取锁的整个过程(与N个Redis节点交互)。
  3. 再次获取当前时间。
  4. 把两个时间相减,计算获取锁的过程是否消耗了太长时间,导致锁已经过期了。如果没过期,
  5. 客户端持有锁去访问共享资源。

在Martin举的例子中,GC pause或网络延迟,实际发生在上述第1步和第3步之间。而不管在第1步和第3步之间由于什么原因(进程停顿或网络延迟等)导致了大的延迟出现,在第4步都能被检查出来,不会让客户端拿到一个它认为有效而实际却已经过期的锁。当然,这个检查依赖系统时钟没有大的跳跃。这也就是为什么antirez在前面要对时钟条件进行辩护的原因。

(延迟只能发生在第3步之后,这导致锁被认为是有效的而实际上已经过期了,也就是说,我们回到了Martin指出的第一个问题上,客户端没能够在锁的有效性过期之前完成与共享资源的交互。让我再次申明一下,这个问题对于所有的分布式锁的实现是普遍存在的,而且基于token的这种解决方案是不切实际的,但也能和Redlock一起用。)

对于大延迟给Redlock带来的影响,恰好与Martin在文章的前半部分针对所有的分布式锁所做的分析是一致的,而这种影响不单单针对Redlock。

Redlock的实现已经保证了它是和其它任何分布式锁的安全性是一样的。当然,与其它“更完美”的分布式锁相比,Redlock似乎提供不了Martin提出的那种递增的token,但antirez在前面已经分析过了,关于token的这种论证方式本身就是“不切实际”的,或者退一步讲,Redlock能提供的unique token也能够提供完全一样的效果。

对于Redlock在第4步所做的锁有效性的检查,Martin是予以肯定的。

但他认为客户端和资源服务器之间的延迟还是会带来问题的。Martin在这里说的有点模糊。就像antirez前面分析的,客户端和资源服务器之间的延迟,对所有的分布式锁的实现都会带来影响,这不单单是Redlock的问题了。

其实看到这里,Martin已经完胜了,但是这场讨论并没有停止,而是在社区引起了广泛的讨论,大家开始讨论那么zk和chubby分布式锁会有什么问题呢?

在antirez在blog中所说的主要内容。有一些点值得我们注意一下:

  • antirez是同意大的系统时钟跳跃会造成Redlock失效的。在这一点上,他与Martin的观点的不同在于,他认为在实际系统中是可以避免大的时钟跳跃的。当然,这取决于基础设施和运维方式。
  • antirez在设计Redlock的时候,是充分考虑了网络延迟和程序停顿所带来的影响的。但是,对于客户端和资源服务器之间的延迟(即发生在算法第3步之后的延迟),antirez是承认所有的分布式锁的实现,包括Redlock,是没有什么好办法来应对的。

讨论进行到这,Martin和antirez之间谁对谁错其实并不是那么重要了。只要我们能够对Redlock(或者其它分布式锁)所能提供的安全性的程度有充分的了解,那么我们就能在业务侧做出自己的选择了。

zk如何实现分布式锁呢?

当然zk作者Flavio Junqueira也出来参与了下。

他的blog就写在Martin和antirez发生争论的那几天。他在文中给出了一个基于ZooKeeper构建分布式锁的描述(当然这不是唯一的方式):

  • 客户端尝试创建一个znode节点,比如/lock。那么第一个客户端就创建成功了,相当于拿到了锁;而其它的客户端会创建失败(znode已存在),获取锁失败。
  • 持有锁的客户端访问共享资源完成后,将znode删掉,这样其它客户端接下来就能来获取锁了。
  • znode应该被创建成ephemeral的。这是znode的一个特性,它保证如果创建znode的那个客户端崩溃了,那么相应的znode会被自动删除。这保证了锁一定会被释放。

看起来这个锁相当完美,没有Redlock过期时间的问题,而且能在需要的时候让锁自动释放。但仔细考察的话,并不尽然。

ZooKeeper是怎么检测出某个客户端已经崩溃了呢?实际上,每个客户端都与ZooKeeper的某台服务器维护着一个Session,这个Session依赖定期的心跳(heartbeat)来维持。如果ZooKeeper长时间收不到客户端的心跳(这个时间称为Sesion的过期时间),那么它就认为Session过期了,通过这个Session所创建的所有的ephemeral类型的znode节点都会被自动删除。

设想如下的执行序列:

  1. 客户端1创建了znode节点/lock,获得了锁。
  2. 客户端1进入了长时间的GC pause。
  3. 客户端1连接到ZooKeeper的Session过期了。znode节点/lock被自动删除。
  4. 客户端2创建了znode节点/lock,从而获得了锁。
  5. 客户端1从GC pause中恢复过来,它仍然认为自己持有锁。

最后,客户端1和客户端2都认为自己持有了锁,冲突了。这与之前Martin在文章中描述的由于GC pause导致的分布式锁失效的情况类似。

看起来,用ZooKeeper实现的分布式锁也不一定就是安全的。该有的问题它还是有。

zk提供了一些非常好的特性,是Redis之类的方案所没有的。像前面提到的ephemeral类型的znode自动删除的功能就是一个例子。

还有一个很有用的特性是ZooKeeper的watch机制。这个机制可以这样来使用,比如当客户端试图创建/lock的时候,发现它已经存在了,这时候创建失败,但客户端不一定就此对外宣告获取锁失败。客户端可以进入一种等待状态,等待当/lock节点被删除的时候,ZooKeeper通过watch机制通知它,这样它就可以继续完成创建操作(获取锁)。这可以让分布式锁在客户端用起来就像一个本地的锁一样:加锁失败就阻塞住,直到获取到锁为止。这样的特性Redlock就无法实现。

小结一下,基于ZooKeeper的锁和基于Redis的锁相比在实现特性上有两个不同:

  • 在正常情况下,客户端可以持有锁任意长的时间,这可以确保它做完所有需要的资源访问操作之后再释放锁。这避免了基于Redis的锁对于有效时间(lock validity time)到底设置多长的两难问题。实际上,基于ZooKeeper的锁是依靠Session(心跳)来维持锁的持有状态的,而Redis不支持Sesion。
  • 基于ZooKeeper的锁支持在获取锁失败之后等待锁重新释放的事件。这让客户端对锁的使用更加灵活。

顺便提一下,如上所述的基于ZooKeeper的分布式锁的实现,并不是最优的。它会引发“herd effect”(羊群效应),降低获取锁的性能。

在看下chubby如何实现分布式锁呢?

提到分布式锁,就不能不提Google的Chubby。

Chubby是Google内部使用的分布式锁服务,有点类似于ZooKeeper,但也存在很多差异。也是最早基于paxos算法的一个工程实现吧。 Chubby自然也考虑到了延迟造成的锁失效的问题。 一个进程持有锁L,发起了请求R,但是请求失败了。另一个进程获得了锁L并在请求R到达目的方之前执行了一些动作。如果后来请求R到达了,它就有可能在没有锁L保护的情况下进行操作,带来数据不一致的潜在风险。

这跟Martin的分析大同小异。

Chubby给出的用于解决(缓解)这一问题的机制称为sequencer,类似于fencing token机制。锁的持有者可以随时请求一个sequencer,这是一个字节串,它由三部分组成:

  • 锁的名字。
  • 锁的获取模式(排他锁还是共享锁)。
  • lock generation number(一个64bit的单调递增数字)。作用相当于fencing token或epoch number。

客户端拿到sequencer之后,在操作资源的时候把它传给资源服务器。然后,资源服务器负责对sequencer的有效性进行检查。检查可以有两种方式:

  • 调用Chubby提供的API,CheckSequencer(),将整个sequencer传进去进行检查。这个检查是为了保证客户端持有的锁在进行资源访问的时候仍然有效。
  • 将客户端传来的sequencer与资源服务器当前观察到的最新的sequencer进行对比检查。可以理解为与Martin描述的对于fencing token的检查类似。

当然,如果由于兼容的原因,资源服务本身不容易修改,那么Chubby还提供了一种机制:

  • lock-delay。Chubby允许客户端为持有的锁指定一个lock-delay的时间值(默认是1分钟)。当Chubby发现客户端被动失去联系的时候,并不会立即释放锁,而是会在lock-delay指定的时间内阻止其它客户端获得这个锁。这是为了在把锁分配给新的客户端之前,让之前持有锁的客户端有充分的时间把请求队列排空(draining the queue),尽量防止出现延迟到达的未处理请求。

可见,为了应对锁失效问题,Chubby提供的三种处理方式:CheckSequencer()检查、与上次最新的sequencer对比、lock-delay,它们对于安全性的保证是从强到弱的。而且,这些处理方式本身都没有保证提供绝对的正确性(correctness)。但是,Chubby确实提供了单调递增的lock generation number,这就允许资源服务器在需要的时候,利用它提供更强的安全性保障。

关于时钟

在Martin与antirez的这场争论中,冲突最为严重的就是对于系统时钟的假设是不是合理的问题。Martin认为系统时钟难免会发生跳跃(这与分布式算法的异步模型相符),而antirez认为在实际中系统时钟可以保证不发生大的跳跃。

从根本上来说,这场讨论最后归结到了一个问题上:为了确保安全性而做出的记时假设到底是否合理。我认为不合理,而antirez认为合理 —— 但是这也没关系。工程问题的讨论很少只有一个正确答案。

Julia Evans在文章最后得出的结论是:

clock skew is real(时钟偏移在现实中是存在的)

当各方的争论在激烈进行的时候,Martin几乎始终置身事外。但是Martin在这件事过去之后,把这个事件的前后经过总结成了一个很长的故事线。如果你想最全面地了解这个事件发生的前后经过,那么建议去读读Martin的这个总结: 对我来说最重要的一点在于:我并不在乎在这场辩论中谁对谁错 —— 我只关心从其他人的工作中学到的东西,以便我们能够避免重蹈覆辙,并让未来更加美好。前人已经为我们创造出了许多伟大的成果:站在巨人的肩膀上,我们得以构建更棒的软件。......对于任何想法,务必要详加检验,通过论证以及检查它们是否经得住别人的详细审查。那是学习过程的一部分。但目标应该是为了获得知识,而不应该是为了说服别人相信你自己是对的。有时候,那只不过意味着停下来,好好地想一想。

回到分布式锁这个问题上来:

Martin说过,按照锁的两种用途,如果仅是为了效率(efficiency),那么你可以自己选择你喜欢的一种分布式锁的实现。当然,你需要清楚地知道它在安全性上有哪些不足,以及它会带来什么后果。而如果你是为了正确性(correctness),那么请慎之又慎。

在分布式锁的正确性上走得最远的地方,要数对于ZooKeeper分布式锁、单调递增的epoch number了。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-06-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 春哥talk 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
云数据库 Redis
腾讯云数据库 Redis(TencentDB for Redis)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档