首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >初探pandas——安装和了解pandas数据结构

初探pandas——安装和了解pandas数据结构

作者头像
LRainner
发布2020-07-15 15:39:34
发布2020-07-15 15:39:34
59700
代码可运行
举报
文章被收录于专栏:安全学习笔记安全学习笔记
运行总次数:0
代码可运行

安装pandas

通过python pip安装pandas

代码语言:javascript
代码运行次数:0
运行
复制
pip install pandas

pandas数据结构

pandas常用数据结构包括:Series和DataFrame

Series

Series是一种一维的数组型对象,包含一个值序列(与numpy中的数据类型相似),数据标签(称为索引(index))。

代码语言:javascript
代码运行次数:0
运行
复制
import pandas as pd

# 创建Series对象
obj=pd.Series([4,5,6,7])
print(obj)
代码语言:javascript
代码运行次数:0
运行
复制
0    4
1    5
2    6
3    7
dtype: int64

左边为索引,右边为值,默认索引从0到n-1(n为数据长度),可以通过values属性和index属性分别获得Series对象的值和索引

代码语言:javascript
代码运行次数:0
运行
复制
print(obj.values)
代码语言:javascript
代码运行次数:0
运行
复制
array([4, 5, 6, 7], dtype=int64)
代码语言:javascript
代码运行次数:0
运行
复制
print(obj.index)
代码语言:javascript
代码运行次数:0
运行
复制
RangeIndex(start=0, stop=4, step=1)
代码语言:javascript
代码运行次数:0
运行
复制
# 自定义索引序列
obj2=pd.Series([4,5,6,7],index=['a','b','d','e'])
print(obj2,'\n')

# 输出索引
print(obj2.index)
代码语言:javascript
代码运行次数:0
运行
复制
a    4
b    5
d    6
e    7
dtype: int64

Index(['a', 'b', 'd', 'e'], dtype='object')

Series对象可以使用标签来进行索引

代码语言:javascript
代码运行次数:0
运行
复制
# 输出索引为b的元素
print(obj2['b'])

# 输出索引为a,d,e的元素
print('* '*10)
print(obj2[['a','d','e']])
代码语言:javascript
代码运行次数:0
运行
复制
5
* * * * * * * * * *
a    4
d    6
e    7
dtype: int64

Series对象也能使用布尔值进行过滤

代码语言:javascript
代码运行次数:0
运行
复制
# 输出值大于5的元素
print(obj2[obj2>5])
代码语言:javascript
代码运行次数:0
运行
复制
d    6
e    7
dtype: int64

DataFrame

DataFrame表示矩阵的数据表,包含已排序的列集合,每一列可以是不同的的值类型(数值、字符串、布尔值等)

DataFrame既有行索引,也有列索引,可以被视为一个共享相同索引的Series的字典

代码语言:javascript
代码运行次数:0
运行
复制
# 创建DataFrame对象
data={'age':[18,18,18,20,20,20],'name':['a','b','c','aa','bb','cc'],'height':[180,180,180,182,182,182]}
frame=pd.DataFrame(data)
print(frame)
代码语言:javascript
代码运行次数:0
运行
复制
   age name  height
0   18    a     180
1   18    b     180
2   18    c     180
3   20   aa     182
4   20   bb     182
5   20   cc     182

DataFrame也可以用columns参数指定列索引顺序排列

代码语言:javascript
代码运行次数:0
运行
复制
frame=pd.DataFrame(data,columns=['name','age','height'])
print(frame)
代码语言:javascript
代码运行次数:0
运行
复制
  name  age  height
0    a   18     180
1    b   18     180
2    c   18     180
3   aa   20     182
4   bb   20     182
5   cc   20     182

如果传的列参数不在字典中,将会出现缺失值

代码语言:javascript
代码运行次数:0
运行
复制
frame=pd.DataFrame(data,columns=['name','age','height','addition'])
print(frame)
print(frame.columns)
代码语言:javascript
代码运行次数:0
运行
复制
  name  age  height addition
0    a   18     180      NaN
1    b   18     180      NaN
2    c   18     180      NaN
3   aa   20     182      NaN
4   bb   20     182      NaN
5   cc   20     182      NaN
Index(['name', 'age', 'height', 'addition'], dtype='object')

DataFrame的一列可以按字典型标记或属性那样索引为Series

代码语言:javascript
代码运行次数:0
运行
复制
frame=pd.DataFrame(data,columns=['name','age','height'])
print(frame['name'])
print(frame.age)
代码语言:javascript
代码运行次数:0
运行
复制
0     a
1     b
2     c
3    aa
4    bb
5    cc
Name: name, dtype: object
0    18
1    18
2    18
3    20
4    20
5    20
Name: age, dtype: int64

行也可以通过位置或特殊属性loc进行索引

代码语言:javascript
代码运行次数:0
运行
复制
frame=pd.DataFrame(data,columns=['name','age','height'])
print(frame.loc[2])
代码语言:javascript
代码运行次数:0
运行
复制
name        c
age        18
height    180
Name: 2, dtype: object
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-07-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白也编程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 安装pandas
  • pandas数据结构
    • Series
    • DataFrame
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档