中阶API示范

TensorFlow有5个不同的层次结构:即硬件层内核层低阶API中阶API高阶API。本章我们将以线性回归为例,直观对比展示在低阶API,中阶API,高阶API这三个层级实现模型的特点。

TensorFlow的层次结构从低到高可以分成如下五层。

最底层为硬件层,TensorFlow支持CPU、GPU或TPU加入计算资源池。

第二层为C++实现的内核,kernel可以跨平台分布运行。

第三层为Python实现的操作符,提供了封装C++内核的低级API指令,主要包括各种张量操作算子、计算图、自动微分.

如tf.Variable,tf.constant,tf.function,tf.GradientTape,tf.nn.softmax...

如果把模型比作一个房子,那么第三层API就是【模型之砖】。

第四层为Python实现的模型组件,对低级API进行了函数封装,主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。

如tf.keras.layers,tf.keras.losses,tf.keras.metrics,tf.keras.optimizers,tf.data.Dataset,tf.feature_column...

如果把模型比作一个房子,那么第四层API就是【模型之墙】。

第五层为Python实现的模型成品,一般为按照OOP方式封装的高级API,主要为tf.keras.models提供的模型的类接口。

如果把模型比作一个房子,那么第五层API就是模型本身,即【模型之屋】。

下面的范例使用TensorFlow的中阶API实现线性回归模型。

TensorFlow的中阶API主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。

import tensorflow as tf
from tensorflow.keras import layers,losses,metrics,optimizers


#打印时间分割线
@tf.function
def printbar():
    ts = tf.timestamp()
    today_ts = ts%(24*60*60)

    hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24)
    minite = tf.cast((today_ts%3600)//60,tf.int32)
    second = tf.cast(tf.floor(today_ts%60),tf.int32)

    def timeformat(m):
        if tf.strings.length(tf.strings.format("{}",m))==1:
            return(tf.strings.format("0{}",m))
        else:
            return(tf.strings.format("{}",m))

    timestring = tf.strings.join([timeformat(hour),timeformat(minite),
                timeformat(second)],separator = ":")
    tf.print("=========="*8,end = "")
    tf.print(timestring)
#样本数量
n = 800

# 生成测试用数据集
X = tf.random.uniform([n,2],minval=-10,maxval=10) 
w0 = tf.constant([[2.0],[-1.0]])
b0 = tf.constant(3.0)
Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0)  # @表示矩阵乘法,增加正态扰动

#构建输入数据管道
ds = tf.data.Dataset.from_tensor_slices((X,Y)) \
     .shuffle(buffer_size = 1000).batch(100) \
     .prefetch(tf.data.experimental.AUTOTUNE)  

#定义优化器
optimizer = optimizers.SGD(learning_rate=0.001)
linear = layers.Dense(units = 1)
linear.build(input_shape = (2,)) 

@tf.function
def train(epoches):
    for epoch in tf.range(1,epoches+1):
        L = tf.constant(0.0) #使用L记录loss值
        for X_batch,Y_batch in ds:
            with tf.GradientTape() as tape:
                Y_hat = linear(X_batch)
                loss = losses.mean_squared_error(tf.reshape(Y_hat,[-1]),tf.reshape(Y_batch,[-1]))
            grads = tape.gradient(loss,linear.variables)
            optimizer.apply_gradients(zip(grads,linear.variables))
            L = loss

        if(epoch%100==0):
            printbar()
            tf.print("epoch =",epoch,"loss =",L)
            tf.print("w =",linear.kernel)
            tf.print("b =",linear.bias)
            tf.print("")

train(500)

本文分享自微信公众号 - Python与算法之美(Python_Ai_Road),作者:梁云1991

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-02-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 低阶API示范

    TensorFlow有5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。本章我们将以线性回归为例,直观对比展示在低阶API,中阶API,...

    lyhue1991
  • TensorFlow基础:常量

    例如 tf.zeros,tf.ones,tf.zeros_like,tf.diag ...

    lyhue1991
  • 使用TensorFlow2预测国内疫情结束时间

    国内的新冠肺炎疫情从发现至今已经持续3个多月了,这场起源于吃野味的灾难给大家的生活造成了诸多方面的影响。

    lyhue1991
  • 使用tensorflow导入已经下载好的mnist数据集()

    先去下载区下载一个mnist数据集,然后放在目录下,然后改folder路径就可以成功读取了

    用户1148525
  • tensorflow中实现神经网络训练手写数字数据集mnist

    基于tensorflow实现一个简单的三层神经网络,并使用它训练mnist数据集,神经网络三层分别为:

    OpenCV学堂
  • 实战|TensorFlow 实践之手写体数字识别!

    本文的主要目的是教会大家运用google开源的深度学习框架tensorflow来实现手写体数字识别,给出两种模型,一种是利用机器学习中的softmax regr...

    IT派
  • 深度学习之 TensorFlow(五):mnist 的 Alexnet 实现

    希希里之海
  • 基于tensorflow实现简单卷积神经网络Lenet5

    徐飞机
  • 【tensorflow2.0】张量的结构操作

    张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。

    绝命生
  • 【tensorflow2.0】中阶api--模型、损失函数、优化器、数据管道、特征列等

    TensorFlow的中阶API主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。

    绝命生

扫码关注云+社区

领取腾讯云代金券