前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >『算法理论学』深度学习推理加速方法之网络层与算子融合

『算法理论学』深度学习推理加速方法之网络层与算子融合

作者头像
小宋是呢
发布2020-08-31 10:04:53
3.7K0
发布2020-08-31 10:04:53
举报
文章被收录于专栏:深度应用

任何事物都有连续性 --《极简主义》范式三:保持连续性的思维可以事半功倍

0.引子

在深度学习推理方面有多种提速方法,如模型剪枝量化与层算子融合等。

网络层与算子融合是非常有效的方法,本文将配合TensorRT与tflite推理框架介绍下网络层与算子融合的原理与应用。

1.融合理论

下面配合TensorRT介绍下网络层与算子融合的原理。

这是一个原始的Inception Block,首先input后会有多个卷积,卷积完后有BiasReLU,结束后将结果concat到一起,得到下一个input。我们一起来看一下使用TensorRT后,这个原始的计算图会被优化成了什么样子。

首先,在没有经过优化的时候Inception Block如Figure1所示:

第二步,对于网络结构进行垂直整合,即将目前主流神经网络的conv、BN、Relu三个层融合为了一个层,所谓CBR,合并后就成了Figure2中的结构。

第三步,TensorRT还可以对网络做水平组合,水平组合是指将输入为相同张量和执行相同操作的层融合一起,下面的Figure3即是将三个相连的CBR为一个大的的CBR。

最后,对于concat层,将contact层的输入直接送入下面的操作中,不用单独进行concat后在输入计算,相当于减少了一次传输吞吐,然后就获得了如Figure4所示的最终计算图。

通过上述的一些操作,网络图由Figure1简化为了Figure4的形式。通过融合的操作,使得

1.网络层数减少,数据通道缩短

2.相同结构合并,使得数据道路变宽

3.更高效利用GPU资源

2.tflite 算子融合

新版本的TensorFlow Lite 将更细化的一系列 TensorFlow 算子(本身由复合算子组成,如 LSTM)融合并优化单个可执行的 TensorFlow Lite 单元中,从而在效率和性能上达到理想效果。 此外,这项新功能还支持 TensorFlow Keras LSTM 算子之间的无缝转换,这也是呼声最高的功能之一。更为方便的是,现在还可以将用户定义的循环神经网络 (RNN) 转换插入 TensorFlow Lite! 让算子融合更加高效

如前文所述,TensorFlow 算子通常由多个更加细化的原始算子组成,例如 tf.add。这样的设计对于实现一定程度的复用性非常重要,并且可让用户根据现有单元自由组穿件算子。复合算子的一个例子是 tf.einsum。执行复合算子与执行组合中的每个算子的效果相同。

但是,如果要满足效率需求,我们通常会将一组更细化的算子计算“融合”到单个算子中。 融合算子的另一项用途是提供高阶接口,以定义量化等复杂转换,否则此类转换将无法实现,或难以在更细化的层面上完成。 TensorFlow Lite 中融合算子的具体示例包括各种 RNN 算子,如单向和双向序列 LSTM、卷积(conv2d、加偏置、ReLU)以及全连接(Matmul、加偏置、ReLU)等。 到目前为止,将 TensorFlow 的算子和 TensorFlow Lite 的算子进行融合,仍具有相当的挑战性!

开箱即用的 RNN 转换和复合算子支持开箱即用的 RNN 转换 现在,我们支持将 Keras LSTM 和 Keras 双向 LSTM 转换为复合 TensorFlow 算子。如要获取基于 RNN 的模型以利用 TensorFlow Lite 中的高效 LSTM 融合算子,这是最简单的方式。请参阅此 Colab,了解如何通过 TensorFlow Lite 解释器进行端到端 Keras LSTM 到 TensorFlow Lite 的转换和执行。

此外,我们通过提供连接至基础架构转换的便捷接口,实现了到其他任意 TensorFlow RNN 实现的转换。您也可查看此功能与使用 lingvo 的 LSTMCellSimple 和 LayerNormalizedLSTMCellSimple RNN 实现相关的数个示例。

如需获取更多信息,请查看我们的 RNN 转换文档。

注:目前,我们致力于对 TensorFlow Lite 的 LSTM 算子添加量化支持。我们将在未来推出相关成果。 扩展至其他复合算子 我们扩展了 TensorFlow Lite 转换器,以便将其他复合 TensorFlow 算子转换为现有或自定义的 TensorFlow Lite 算子。

要实现 TensorFlow 算子融合至 TensorFlow Lite,需执行以下步骤:

  1. 将复合算子打包至 tf.function 中。在 TensorFlow 模型源代码中,使用 experimental_implements 函数注释标识复合算子并将其抽象为 tf.function。
  2. 编写转换代码。从概念上看,转换代码用已融合算子替换了此接口的复合实现。在 prepare-composite-functions 传递中,插入转换代码。
  3. 调用 TensorFlow Lite 转换器。使用 TFLiteConverter.from_saved_model API 转换为 TensorFlow Lite。

-1.参考

-1.0:https://developer.nvidia.com/zh-cn/tensorrt

-1.1:https://zhuanlan.zhihu.com/p/110934202

-1.2:https://mp.weixin.qq.com/s/KrlMxmO6XxdKx-BuOJEOZA

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020/08/27 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 0.引子
  • 1.融合理论
  • 2.tflite 算子融合
  • -1.参考
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档