专栏首页郭先生的博客three.js 欧拉角和四元数

three.js 欧拉角和四元数

这篇郭先生就来说说欧拉角和四元数,欧拉角和四元数的优缺点是老生常谈的话题了,使用条件我就不多说了,我只说一下使用方法。

1. 欧拉角(Euler)

欧拉角描述一个旋转变换,通过指定轴顺序和其各个轴向上的指定旋转角度来旋转一个物体。下面我们开看看它的方法

1. set( x: number, y: number, z: number, order?: string ): Euler

x - 用弧度表示x轴旋转量。y - 用弧度表示y轴旋转量。z - 用弧度表示z轴旋转量。order - (optional) 表示旋转顺序的字符串。设置该欧拉变换的角度和旋转顺序 order。

2. clone(): this

返回一个与当前参数相同的新欧拉角。

3. copy( euler: Euler ): this

将 euler 的属性拷贝到当前对象。

4. setFromRotationMatrix( m: Matrix4, order?: string ): Euler

m - Matrix4 矩阵上面的3x3部分是一个纯旋转矩阵rotation matrix (也就是不发生缩放)order - (可选参数) 表示旋转顺序的字符串。使用基于 order 顺序的纯旋转矩阵来设置当前欧拉角。

var vector = new THREE.Vector3(0,0,1);
var matrix = new THREE.Matrix4().makeRotationAxis(vector, Math.PI/6)
var euler = new THREE.Euler().setFromRotationMatrix(matrix); // 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}

5. setFromQuaternion( q: Quaternion, order?: string ): Euler

根据 order 指定的方向,使用归一化四元数设置这个欧拉变换的角度。

var vector = new THREE.Vector3(0,0,1);
var quaternion = new THREE.Quaternion().setFromAxisAngle(vector, Math.PI/6)
var euler = new THREE.Euler().setFromQuaternion(quaternion);// 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}结果同上

6. setFromVector3( v: Vector3, order?: string ): Euler

设置 x, y and z 并且选择性更新 order。

var vector = new THREE.Vector3(0,0,Math.PI/6);
var euler = new THREE.Euler().setFromVector3(vector);/ 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}结果同上

7. reorder( newOrder: string ): Euler

通过这个欧拉角创建一个四元数,然后用这个四元数和新顺序设置这个欧拉角。

8. equals( euler: Euler ): boolean

检查 euler 是否与当前对象相同。

9. fromArray( xyzo: any[] ): Euler

长度为3或4的一个 array 。array3 是一个可选的 order 参数。将欧拉角的x分量设置为 array0。将欧拉角的x分量设置为 array1。将欧拉角的x分量设置为 array2。将array3设置给欧拉角的 order 。可选。

10. toArray( array?: number[], offset?: number ): number[]

返回一个数组:x, y, z, order 。

11. toVector3( optionalResult?: Vector3 ): Vector3

以 Vector3 的形式返回欧拉角的 x, y 和 z。

var vector = new THREE.Vector3(0,0,Math.PI/6);
var euler = new THREE.Euler().setFromVector3(vector);
euler.toVector3(); //返回Vector3 {x: 0, y: 0, z: 0.5235987755982988}

2. 四元数

四元数对象Quaternion使用x、y、z和w四个分量表示。在三维空间中一个旋转由一个旋转轴、一个旋转角度和旋转方向来唯一确定。

假设我们默认为右手法则的旋转,则旋转方向为逆时针,旋转轴向量为v = (vx, vy, vz), 角度为旋转角度,那么该旋转就应该类似如下图所示:

其对应的四元数就是:

1. set( x: number, y: number, z: number, w: number ): Quaternion

设置该四元数的值。

2. clone(): this

克隆此四元数。

3. copy( q: Quaternion ): this

将q的值复制到这个四元数。

4. setFromEuler( euler: Euler ): Quaternion

用欧拉角指定的旋转来设置此四元数。

var euler = new THREE.Euler(0,0,Math.PI/6);
var quaternion = new THREE.Quaternion().setFromEuler(euler) //返回Quaternion {_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}

5. setFromAxisAngle( axis: Vector3, angle: number ): Quaternion

使用由轴和角度指定的旋转来设置此四元数。axis 应该是归一化的,angle 的单位是弧度。

var vector1 = new THREE.Vector3(0,0,1);
var vector2 = new THREE.Vector3(0,0,2);
var quaternion1 = new THREE.Quaternion().setFromAxisAngle(vector1, Math.PI/6); //返回Quaternion {_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
var quaternion2 = new THREE.Quaternion().setFromAxisAngle(vector2, Math.PI/6); //返回Quaternion {_x: 0, _y: 0, _z: 0.5176380902050415, _w: 0.9659258262890683}

可见axis是否归一化对四元数的x、y和z值的影响是线性的。

6. setFromRotationMatrix( m: Matrix4 ): Quaternion

从m的旋转分量来设置该四元数。使用很简单就不多说了。

7. setFromUnitVectors( vFrom: Vector3, vTo: Vector3 ): Quaternion

通过从向量vFrom到vTo所需的旋转来设置这四元数。vFrom 和 vTo 应该是归一化的。我们来看一下

var vector1 = new THREE.Vector3(1,1,0);
var vector2 = new THREE.Vector3(0,1,0);
var quaternion = new THREE.Quaternion().setFromUnitVectors(vector1, vector2); //相当于绕z轴旋转了Math.PI/4

8. angleTo( q: Quaternion ): number

返回这个四元数到q的角度

var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/3));
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6));
quaternion1.angleTo(quaternion2); // 返回0.5235987755982987

9. rotateTowards( q: Quaternion, step: number ): Quaternion

将此四元数按给定的step旋转到定义的四元数q。该方法确保最终四元数不会超出q。那么是什么意思呢?

var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/3)); //{_x: 0, _y: 0, _z: 0.49999999999999994, _w: 0.8660254037844387}
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6)); //{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
quaternion1.rotateTowards( quaternion2, 0); //{_x: 0, _y: 0, _z: 0.49999999999999994, _w: 0.8660254037844387}
quaternion1.rotateTowards( quaternion2, 0.5); //{_x: 0, _y: 0, _z: 0.2701980971440553, _w: 0.9628047508709812}
quaternion1.rotateTowards( quaternion2, 1); //{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}

可以看出其内部使用了quaternion.slerp()方法。

  • 当step为0时,rotateTowards方法返回就是当前四元数
  • 当step为1时,rotateTowards方法返回就是参数q的四元数
  • 当step为0~1之间时,rotateTowards方法返回就是当前四元数和参数q的四元数之间的插值。

10. inverse(): Quaternion

转置此四元数-计算共轭。假设四元数具有单位长度。

var quaternion = new THREE.Quaternion().setFromEuler(new THREE.Euler(Math.PI/6,Math.PI/6,Math.PI/6)); //初始四元数Quaternion {_x: 0.30618621784789724, _y: 0.17677669529663687, _z: 0.30618621784789724, _w: 0.8838834764831845}
quaternion.inverse(); //返回Quaternion {_x: -0.30618621784789724, _y: -0.17677669529663687, _z: -0.30618621784789724, _w: 0.8838834764831845}

由此可知计算共轭之后,x、y和z分别取复制,而w值不变。

11. conjugate(): Quaternion

返回此四元数的旋转共轭。四元数的共轭。表示旋转轴在相反方向上的同一个旋转。经过我的测试这个方法和inverse()方法是一样的,来看看inverse的源码

inverse: function () {
		// quaternion is assumed to have unit length
		return this.conjugate();
},

12. dot( v: Quaternion ): number

计算四元数v和当前四元数的点积。众所周知点积得到的是一个数字。很简单

13. lengthSq(): number

计算四元数的平方长度。就是各个值平方求和。

14 length(): number

计算此四元数的长度。也就是各个值平方求和,然后在开根号。

15. normalize(): Quaternion

归一化该四元数。开看下源码

normalize: function () {
		var l = this.length();
		if ( l === 0 ) { //如果四元数参length为0,那么this._x、this._y和this._z都设置为0,this._w设置为1
			this._x = 0;
			this._y = 0;
			this._z = 0;
			this._w = 1;
		} else { //如果四元数参length为l,那么四元数的各个参数乘以l的倒数。
			l = 1 / l;
			this._x = this._x * l;
			this._y = this._y * l;
			this._z = this._z * l;
			this._w = this._w * l;
		}
		return this;
	},

16. multiply( q: Quaternion ): Quaternion

把该四元数和q相乘。具体怎么相乘。稍后再说。

17. premultiply( q: Quaternion ): Quaternion;

使用q左乘以(pre-multiply)该四元数。同样稍后再说。

18. multiplyQuaternions( a: Quaternion, b: Quaternion ): Quaternion

四元数a乘以四元数b,我们说一下四元数的乘法。

multiplyQuaternions: function ( a, b ) {
		var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
		var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
		this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
		this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
		this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
		this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
		return this;
},

19. equals( v: Quaternion ): boolean;

比较v和这个四元数的各个分量,以确定两者是否代表同样的旋转。不多说。

20. slerp( qb: Quaternion, t: number ): Quaternion

处理四元数之间的球面线性插值。t 代表quaternionA(这里t为0)和quaternionB(这里t为1)这两个四元数之间的旋转量。quaternion 被设置为结果。rotateTowards的底层同样使用了slerp方法。

var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6));
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/2));
quaternion1; //quaternion1的值为{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
quaternion2; //quaternion2的值为{_x: 0, _y: 0, _z: 0.7071067811865475, _w: 0.7071067811865476}
quaternion1.slerp(quaternion2, 0) //返回的结果和quaternion1相同
quaternion1.slerp(quaternion2, 1) //返回的结果和quaternion2相同
quaternion1.slerp(quaternion2, 其他值) //返回quaternion1到quaternion2的插值,当然这个t也是可以大于1的
//看一下rotateTowards的部分源码
rotateTowards: function ( q, step ) {
    var angle = this.angleTo( q );
    if ( angle === 0 ) return this;
    var t = Math.min( 1, step / angle );
    this.slerp( q, t );
    return this;
}

21. static slerp: functistatic slerp(qa: Quaternion, qb: Quaternion, qm: Quaternion, t: number): Quaternionon

这是slerp的静态方法,无需动态设置。同样使用了slerp方法。

slerp: function ( qa, qb, qm, t ) {
    return qm.copy( qa ).slerp( qb, t );
}

关于欧拉角四元数要说的差不多就这些,还需要平时多多应用才能记熟。

转载请注明地址:郭先生的博客

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Oculus + Node.js + Three.js 打造VR世界

    Oculus Rift 是一款为电子游戏设计的头戴式显示器。这是一款虚拟现实设备。这款设备很可能改变未来人们游戏的方式。 周五Hackday Showcase的...

    李海彬
  • js调用原生API--陀螺仪和加速器

    介绍 W3C设备方向规范允许开发者使用陀螺仪和加速计的数据。这个功能能被用来在现代浏览器里构筑虚拟现实和增强现实的体验。但是这处理原生数据的学习曲线对开发者来说...

    前朝楚水
  • Unity基础(17)-四元数与欧拉角与矩阵

    Quaternion中存放了x,y,z,w四个数据成员,可以用下标来进行访问,对应的下标分别是0,1,2,3 其实最简单来说:四元数就是表示一个3D物体的旋转...

    孙寅
  • three.js 数学方法之Vector3

    今天郭先生来说一说three.js的Vector3,该类表示的是一个三维向量(3D vector)。 一个三维向量表示的是一个有顺序的、三个为一组的数字组合(标...

    郭先生的博客
  • 【带着canvas去流浪(12)】用Three.js制作简易的MARVEL片头动画(上)

    通读完上一篇博文中提及的教程,觉得应该搞个大作业巩固一下所学的知识,想起刚上映的漫威宇宙第三阶段收官之作《蜘蛛侠·英雄远征》,于是决定仿一个MARVEL的片头动...

    大史不说话
  • three.js 数学方法之Matrix4

    今天郭先生说一说three.js中的Matrix4,相较于Matrix3来说,Matrix4和three.js联系的更紧密,因为在4x4矩阵最常用的用法是作为一...

    郭先生的博客
  • 裸眼 3D 是什么效果?

    ? 作者:沙因,腾讯 IEG 前端开发工程师 介绍一种裸眼 3D 的实现方式,代码以 web 端为例。 平常我们都是戴着 3D 眼镜才能感受 3D 效果,那裸...

    腾讯技术工程官方号
  • 坐标转换与姿态描述

    为了能够科学的反映物体的运动特性,会在特定的坐标系中进行描述,一般情况下,分析飞行器运动特性经常要用到以下几种坐标系统1、大地坐标系统;2、地心固定坐标系统;3...

    小飞侠xp
  • 吹弹牛皮之Unity 引擎基础 - 四元数(二)

    上一篇的四元数内容,简单的介绍了四元数的一些基础运算,继续前篇的内容,继续扩充如下内容:

    用户7698595
  • UE5中四元数的旋转技巧

    旋转角过渡:测试角度: 0,45,0旋转到 120,90,100【可以看到旋转绕了一圈】

    Jean
  • 四旋翼姿态解算之理论推导

    对于每个像我一样入坑四轴飞行器不久的新手来说,最初接触也颇为头疼的东西之一就是四轴的姿态解算。由于涉及较多的数学知识,很多人也是觉得十分头疼。所以,我在这里分享...

    努力努力再努力F
  • WebGL 概念和基础入门

    本文首发于政采云前端团队博客:WebGL 概念和基础入门 https://www.zoo.team/article/webglabout

    政采云前端团队
  • 三维空间的刚体运动

    一个刚体在三维空间中的运动如何描述? 我们知道是由旋转加平移组成的,平移很简单,但是旋转有点麻烦。 三维空间的刚体运动的描述方式:旋转矩阵、变换...

    Albert_xiong
  • 【Unity3D 灵巧小知识点】☀️ | Unity 四元数、欧拉角 与 方向向量 之间转换

    呆呆敲代码的小Y
  • iOS 手机运动CoreMotion

    清墨
  • 解剖 WebGL & Three.js 工作原理

    本文主要通过两方面来解剖 WebGL & Three.js :WebGL背后的工作原理和以Three.js为例,讲述框架在背后扮演什么样的角色,希望对大家学习有...

    万技师
  • 四轴飞行器姿态控制算法

    姿态解算 姿态解算(attitude algorithm),是指把陀螺仪,加速度计, 罗盘等的数据融合在一起,得出飞行器的空中姿态,飞行器从陀螺仪器的三轴角速度...

    机器人网
  • 技术干货:四轴飞行器姿态控制算法

    从陀螺仪器的三轴角速度通过四元数法得到俯仰,航偏,滚转角,这是快速解算,结合三轴地磁和三轴加速度得到漂移补偿和深度解算。 姿态的数学模型坐标系 姿态解算需要解...

    机器人网
  • 坐标系与矩阵(2):朝向

    ,这称之为轴角旋转(Angle-Axis Rotation)。这里,我们可以给出两个结论:

    Peter Lu

作者介绍

精选专题

活动推荐

扫码关注云+社区

领取腾讯云代金券