既然在项目中使用了MQ,那么就不可避免的需要考虑消息丢失问题。在一些涉及到了金钱交易的场景下,消息丢失还是很致命的。那么在RocketMQ中存在哪几种消息丢失的场景呢?
先来一张最简单的消费流程图:
上图中大致包含了这么几种场景:
这三种场景都可能会产生消息的丢失,如下图所示:
1、场景1中生产者将消息发送给Rocket MQ的时候,如果出现了网络抖动或者通信异常等问题,消息就有可能会丢失
2、场景2中消息需要持久化到磁盘中,这时会有两种情况导致消息丢失
3、消费者成功从RocketMQ中获取到了消息,还没有将消息完全消费完的时候,就通知RocketMQ我已经将消息消费了,然后消费者宕机,但是RocketMQ认为消费者已经成功消费了数据,所以数据依旧丢失了。
那么如何保证消息的零丢失呢?
1、场景1中保证消息不丢失的方案是使用RocketMQ自带的事务机制来发送消息,大致流程为:
其中还有一些RocketMQ长时间没有收到生产者是要commit/rollback操作的响应,回调生产者接口的细节,感兴趣的可以参考:
https://blog.csdn.net/LO_YUN/article/details/101673893
在使用了RocketMQ事务将生产者的消息成功发送给RocketMQ,就可以保证在这个阶段消息不会丢失
2、在场景2中要保证消息不丢失,首先需要将os cache的异步刷盘策略改为同步刷盘,这一步需要修改Broker的配置文件,将flushDiskType改为SYNC_FLUSH同步刷盘策略,默认的是ASYNC_FLUSH异步刷盘。
一旦同步刷盘返回成功,那么就一定保证消息已经持久化到磁盘中了;为了保证磁盘损坏不会丢失数据,我们需要对RocketMQ采用主从机构,集群部署,Leader中的数据在多个Follower中都存有备份,防止单点故障。
3、在场景3中,消息到达了消费者,RocketMQ在代码中就能保证消息不会丢失
//注册消息监听器处理消息
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context){
//对消息进行处理
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
上面这段代码中,RocketMQ在消费者中注册了一个监听器,当消费者获取到了消息,就会去回调这个监听器函数,去处理里面的消息
当你的消息处理完毕之后,才会返回ConsumeConcurrentlyStatus.CONSUME_SUCCESS 只有返回了CONSUME_SUCCESS,消费者才会告诉RocketMQ我已经消费完了,此时如果消费者宕机,消息已经处理完了,也就不会丢失消息了
如果消费者还没有返回CONSUME_SUCCESS时就宕机了,那么RocketMQ就会认为你这个消费者节点挂掉了,会自动故障转移,将消息交给消费者组的其他消费者去消费这个消息,保证消息不会丢失
为了保证消息不会丢失,在consumeMessage方法中就直接写消息消费的业务逻辑就可以了,如果非要搞一些骚操作,比如下面的代码
//注册消息监听器处理消息
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context){
//开启子线程异步处理消息
new Thread() {
public void run() {
//对消息进行处理
}
}.start();
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
如果新开子线程异步处理消息的话,就有可能出现消息还没有被消费完,消费者告诉RocketMQ消息已经被消费了,结果宕机丢失消息的情况。
使用上面一整套的方案就可以在使用RocketMQ时保证消息零丢失,但是性能和吞吐量也将大幅下降
消息零丢失是一把双刃剑,要想用好,还是要视具体的业务场景而定,选择合适的方案才是最好的
在公众号菜单中可自行获取专属架构视频资料,包括不限于 java架构、python系列、人工智能系列、架构系列,以及最新面试、小程序、大前端均无私奉献,你会感谢我的哈