专栏首页计算广告生态3. Pandas系列 - DataFrame操作

3. Pandas系列 - DataFrame操作

概览

  • pandas.DataFrame
  • 创建DataFrame
    • 列表
    • 字典
    • 系列(Series)
  • 列选择
  • 列添加
  • 列删除 pop/del
  • 行选择,添加和删除
    • 标签选择 loc
    • 按整数位置选择 iloc
  • 行切片
    • 附加行 append
    • 删除行 drop

数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列

数据帧(DataFrame)的功能特点:

  • 潜在的列是不同的类型
  • 大小可变
  • 标记轴(行和列)
  • 可以对行和列执行算术运算

pandas.DataFrame

构造函数:

pandas.DataFrame(data, index, columns, dtype, copy)

编号

参数

描述

1

data

数据采取各种形式,如:ndarray,series,map,lists,dict,constant和另一个DataFrame。

2

index

对于行标签,要用于结果帧的索引是可选缺省值np.arrange(n),如果没有传递索引值。

3

columns

对于列标签,可选的默认语法是 - np.arange(n)。这只有在没有索引传递的情况下才是这样。

4

dtype

每列的数据类型。

5

copy

如果默认值为False,则此命令(或任何它)用于复制数据。

创建DataFrame

Pandas数据帧(DataFrame)可以使用各种输入创建

  • 列表
  • 字典
  • 系列(Series)
  • Numpy ndarrays
  • 另一个数据帧(DataFrame)

列表

import pandas as pd
data = [1,2,3,4,5]
df = pd.DataFrame(data)
print df

res:

     0
0    1
1    2
2    3
3    4
4    5
import pandas as pd
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
print df

res:

    a    b      c
0   1   2     NaN
1   5   10   20.0

字典

import pandas as pd
data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4'])
print df

res:

         Age    Name
rank1    28      Tom
rank2    34     Jack
rank3    29    Steve
rank4    42    Ricky

系列(Series)

import pandas as pd

d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
      'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)
print df

res:

      one    two
a     1.0    1
b     2.0    2
c     3.0    3
d     NaN    4

列选择

import pandas as pd

d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
      'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)
print df ['one']

列添加

import pandas as pd

d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
      'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)

# Adding a new column to an existing DataFrame object with column label by passing new series

print ("Adding a new column by passing as Series:")
df['three']=pd.Series([10,20,30],index=['a','b','c'])
print df

print ("Adding a new column using the existing columns in DataFrame:")
df['four']=df['one']+df['three']

print df

列删除 pop/del

# Using the previous DataFrame, we will delete a column
# using del function
import pandas as pd

d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 
     'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']), 
     'three' : pd.Series([10,20,30], index=['a','b','c'])}

df = pd.DataFrame(d)
print ("Our dataframe is:")
print df

# using del function
print ("Deleting the first column using DEL function:")
del df['one']
print df

# using pop function
print ("Deleting another column using POP function:")
df.pop('two')
print df

行选择,添加和删除

标签选择 loc

import pandas as pd

d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 
     'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)
print df.loc['b']

按整数位置选择 iloc

import pandas as pd

d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
     'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)
print df.iloc[2]

行切片

附加行 append

使用append()函数将新行添加到DataFrame

import pandas as pd

df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])

df = df.append(df2)
print df

删除行 drop

使用索引标签从DataFrame中删除或删除行。如果标签重复,则会删除多行。

import pandas as pd

df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])

df = df.append(df2)

# Drop rows with label 0
df = df.drop(0)

print df

作者:Johngo

配图:Pexels

本文分享自微信公众号 - 计算广告生态(data_structure-5min),作者:计算广告生态

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-07-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 1. Pandas系列 - 基本数据结构

    从这一篇文章开始,想要跟大家一起探讨关于数据科学最重要的工具了,就是Python提供了 Numpy 和 Pandas,咱们先从Pandas开始,走上数据分析高手...

    计算广告生态
  • 7. Pandas系列 - 排序和字符串处理

    sort_values()提供了从mergeesort,heapsort和quicksort中选择算法的一个配置。Mergesort是唯一稳定的算法

    计算广告生态
  • 8. Pandas系列 - 选项和自定义

    get_option(param)需要一个参数,并返回下面输出中给出的值 get_option需要一个参数,并返回下面输出中给出的值

    计算广告生态
  • Python Pandas 对列/行进行选择,增加,删除操作

    到此这篇关于Python Pandas 对列/行进行选择,增加,删除操作的文章就介绍到这了,更多相关Python Pandas行列选择增加删除内容请搜索ZaLo...

    砸漏
  • Pandas切片操作:一个很容易忽视的错误

    Pandas是一个强大的分析结构化数据的工具集,主要用于数据挖掘和数据分析,同时也提供数据清洗功能。

    统计学家
  • ​【Python基础】一文看懂 Pandas 中的透视表

    透视表在一种功能很强大的图表,用户可以从中读取到很多的信息。利用excel可以生成简单的透视表。本文中讲解的是如何在pandas中的制作透视表。

    黄博的机器学习圈子
  • ​一文看懂 Pandas 中的透视表

    透视表在一种功能很强大的图表,用户可以从中读取到很多的信息。利用excel可以生成简单的透视表。本文中讲解的是如何在pandas中的制作透视表。

    刘早起
  • 8个Python高效数据分析的技巧

    厌倦了定义用不了几次的函数? Lambda表达式是你的救星! Lambda表达式用于在Python中创建小型,一次性和匿名函数对象。 它能替你创建一个函数。

    用户2966292
  • 小蛇学python(3)两百行代码实现微信好友数据爬取与可视化

    前段时间发现了一个好玩的东西,一个python的第三方库itchat,它的功能很强大。只要你扫一下它所生成的二维码即可模拟登陆你的微信号,然后可以实现自动回复,...

    用户2145057
  • 8 个 Python 高效数据分析的技巧

    不管是参加Kaggle比赛,还是开发一个深度学习应用,第一步总是数据分析,这篇文章介绍了8个使用Python进行数据分析的方法,不仅能够提升运行效率,还能够使代...

    用户2769421

扫码关注云+社区

领取腾讯云代金券