原文 | https://pandas.pydata.org/pandas-docs/version/0.18.0/
编译|刘早起(有删改)
首先导入Python数据处理中常用的三个库
如果没有可以分别执行下方代码框安装
#安装pandas !pip install pandas
#安装numpy !pip install numpy
#安装matplotlib !pip install matoplotlib
import numpy as np import pandas as pd import matplotlib.pyplot as plt
使用pd.Series创建Series对象
s = pd.Series([1,3,5,np.nan,6,8])
s
0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64
通过numpy的array数据来创建DataFrame对象
dates = pd.date_range('20130101', periods=6)
dates
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
df
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.469364 | -1.389291 | 0.844032 | 0.042866 |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | -1.403883 |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | -0.802585 |
2013-01-06 | 0.493946 | 0.848247 | 1.633055 | -0.740562 |
通过字典创建DataFrame对象
df2 = pd.DataFrame({ 'A' : 1., 'B' : pd.Timestamp('20130102'), 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), 'D' : np.array([3] * 4,dtype='int32'), 'E' : pd.Categorical(["test","train","test","train"]), 'F' : 'foo' })
df2
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
0 | 1.0 | 2013-01-02 | 1.0 | 3 | test | foo |
1 | 1.0 | 2013-01-02 | 1.0 | 3 | train | foo |
2 | 1.0 | 2013-01-02 | 1.0 | 3 | test | foo |
3 | 1.0 | 2013-01-02 | 1.0 | 3 | train | foo |
df2.dtypes
A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
dir(df2)
['A', 'B', 'C', 'D', 'E', 'F', 'T', '_AXIS_ALIASES', '_AXIS_IALIASES', '_AXIS_LEN', '_AXIS_NAMES', '_AXIS_NUMBERS', '_AXIS_ORDERS', '_AXIS_REVERSED', ······ 'unstack', 'update', 'values', 'var', 'where', 'xs']
基本方法,务必掌握,更多相关查看数据的方法可以参与官方文档[1]
下面分别是查看数据的顶部和尾部的方法
df.head()
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.469364 | -1.389291 | 0.844032 | 0.042866 |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | -1.403883 |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | -0.802585 |
df.tail(3)
A | B | C | D | |
---|---|---|---|---|
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | -1.403883 |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | -0.802585 |
2013-01-06 | 0.493946 | 0.848247 | 1.633055 | -0.740562 |
查看DataFrame对象的索引,列名,数据信息
df.index
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D')
df.columns
Index(['A', 'B', 'C', 'D'], dtype='object')
df.values
array([[-0.46936354, -1.38929068, 0.84403157, 0.04286594], [ 0.98657633, -0.68954348, -0.38326456, -1.10493201], [-0.19242554, 1.74076522, 0.73047859, -1.32078058], [ 0.04734752, -1.95230265, -0.6915437 , -1.40388308], [ 0.23302102, 0.61911183, 0.628579 , -0.80258543], [ 0.49394583, 0.84824737, 1.633055 , -0.74056229]])
描述性统计
df.describe()
A | B | C | D | |
---|---|---|---|---|
count | 6.000000 | 6.000000 | 6.000000 | 6.000000 |
mean | 0.183184 | -0.137169 | 0.460223 | -0.888313 |
std | 0.515722 | 1.430893 | 0.855835 | 0.528401 |
min | -0.469364 | -1.952303 | -0.691544 | -1.403883 |
25% | -0.132482 | -1.214354 | -0.130304 | -1.266818 |
50% | 0.140184 | -0.035216 | 0.679529 | -0.953759 |
75% | 0.428715 | 0.790963 | 0.815643 | -0.756068 |
max | 0.986576 | 1.740765 | 1.633055 | 0.042866 |
数据转置
df.T
2013-01-01 00:00:00 | 2013-01-02 00:00:00 | 2013-01-03 00:00:00 | 2013-01-04 00:00:00 | 2013-01-05 00:00:00 | 2013-01-06 00:00:00 | |
---|---|---|---|---|---|---|
A | -0.469364 | 0.986576 | -0.192426 | 0.047348 | 0.233021 | 0.493946 |
B | -1.389291 | -0.689543 | 1.740765 | -1.952303 | 0.619112 | 0.848247 |
C | 0.844032 | -0.383265 | 0.730479 | -0.691544 | 0.628579 | 1.633055 |
D | 0.042866 | -1.104932 | -1.320781 | -1.403883 | -0.802585 | -0.740562 |
根据列名排序
df.sort_index(axis=1, ascending=False)
D | C | B | A | |
---|---|---|---|---|
2013-01-01 | 0.042866 | 0.844032 | -1.389291 | -0.469364 |
2013-01-02 | -1.104932 | -0.383265 | -0.689543 | 0.986576 |
2013-01-03 | -1.320781 | 0.730479 | 1.740765 | -0.192426 |
2013-01-04 | -1.403883 | -0.691544 | -1.952303 | 0.047348 |
2013-01-05 | -0.802585 | 0.628579 | 0.619112 | 0.233021 |
2013-01-06 | -0.740562 | 1.633055 | 0.848247 | 0.493946 |
根据B列数值排序
df.sort_values(by='B')
A | B | C | D | |
---|---|---|---|---|
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | -1.403883 |
2013-01-01 | -0.469364 | -1.389291 | 0.844032 | 0.042866 |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | -0.802585 |
2013-01-06 | 0.493946 | 0.848247 | 1.633055 | -0.740562 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 |
官方建议使用优化的熊猫数据访问方法.at,.iat,.loc
和.iloc
,部分较早的pandas版本可以使用.ix
这些选取函数的使用需要熟练掌握,我也曾写过相关文章帮助理解
选取单列数据,等效于df.A
:
df['A']
2013-01-01 -0.469364 2013-01-02 0.986576 2013-01-03 -0.192426 2013-01-04 0.047348 2013-01-05 0.233021 2013-01-06 0.493946 Freq: D, Name: A, dtype: float64
按行选取数据,使用[]
df[0:3]
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.469364 | -1.389291 | 0.844032 | 0.042866 |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 |
df['20130102':'20130104']
A | B | C | D | |
---|---|---|---|---|
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | -1.403883 |
df.loc[dates[0]]
A -0.469364 B -1.389291 C 0.844032 D 0.042866 Name: 2013-01-01 00:00:00, dtype: float64
df.loc[:,['A','B']]
A | B | |
---|---|---|
2013-01-01 | -0.469364 | -1.389291 |
2013-01-02 | 0.986576 | -0.689543 |
2013-01-03 | -0.192426 | 1.740765 |
2013-01-04 | 0.047348 | -1.952303 |
2013-01-05 | 0.233021 | 0.619112 |
2013-01-06 | 0.493946 | 0.848247 |
df.loc['20130102':'20130104',['A','B']]
A | B | |
---|---|---|
2013-01-02 | 0.986576 | -0.689543 |
2013-01-03 | -0.192426 | 1.740765 |
2013-01-04 | 0.047348 | -1.952303 |
df.loc['20130102',['A','B']]
A 0.986576 B -0.689543 Name: 2013-01-02 00:00:00, dtype: float64
df.loc[dates[0],'A']
-0.46936353804430075
df.at[dates[0],'A']
-0.46936353804430075
df.iloc[3]
A 0.047348 B -1.952303 C -0.691544 D -1.403883 Name: 2013-01-04 00:00:00, dtype: float64
df.iloc[3:5, 0:2]
A | B | |
---|---|---|
2013-01-04 | 0.047348 | -1.952303 |
2013-01-05 | 0.233021 | 0.619112 |
df.iloc[[1,2,4],[0,2]]
A | C | |
---|---|---|
2013-01-02 | 0.986576 | -0.383265 |
2013-01-03 | -0.192426 | 0.730479 |
2013-01-05 | 0.233021 | 0.628579 |
df.iloc[1:3]
A | B | C | D | |
---|---|---|---|---|
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 |
df.iloc[:, 1:3]
B | C | |
---|---|---|
2013-01-01 | -1.389291 | 0.844032 |
2013-01-02 | -0.689543 | -0.383265 |
2013-01-03 | 1.740765 | 0.730479 |
2013-01-04 | -1.952303 | -0.691544 |
2013-01-05 | 0.619112 | 0.628579 |
2013-01-06 | 0.848247 | 1.633055 |
df.iloc[1, 1]
-0.689543482094678
df.iat[1, 1]
-0.689543482094678
df[df.A>0]
A | B | C | D | |
---|---|---|---|---|
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | -1.403883 |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | -0.802585 |
2013-01-06 | 0.493946 | 0.848247 | 1.633055 | -0.740562 |
df[df>0]
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | NaN | NaN | 0.844032 | 0.042866 |
2013-01-02 | 0.986576 | NaN | NaN | NaN |
2013-01-03 | NaN | 1.740765 | 0.730479 | NaN |
2013-01-04 | 0.047348 | NaN | NaN | NaN |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | NaN |
2013-01-06 | 0.493946 | 0.848247 | 1.633055 | NaN |
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
df2
A | B | C | D | E | |
---|---|---|---|---|---|
2013-01-01 | -0.469364 | -1.389291 | 0.844032 | 0.042866 | one |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | -1.104932 | one |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 | two |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | -1.403883 | three |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | -0.802585 | four |
2013-01-06 | 0.493946 | 0.848247 | 1.633055 | -0.740562 | three |
df2[df2['E'].isin(['two','four'])]
A | B | C | D | E | |
---|---|---|---|---|---|
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | -1.320781 | two |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | -0.802585 | four |
添加新列并自动按索引对齐数据
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
s1
2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64
df['F'] = s1
df.at[dates[0], 'A'] = 0
df.iat[0, 1] = 0
df.loc[:, 'D'] = np.array([5] * len(df))
df
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | 0.844032 | 5 | NaN |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | 5 | 1.0 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | 5 | 2.0 |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | 5 | 3.0 |
2013-01-05 | 0.233021 | 0.619112 | 0.628579 | 5 | 4.0 |
2013-01-06 | 0.493946 | 0.848247 | 1.633055 | 5 | 5.0 |
df2 = df.copy()
df2[df2 > 0] = -df2
df2
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | -0.844032 | -5 | NaN |
2013-01-02 | -0.986576 | -0.689543 | -0.383265 | -5 | -1.0 |
2013-01-03 | -0.192426 | -1.740765 | -0.730479 | -5 | -2.0 |
2013-01-04 | -0.047348 | -1.952303 | -0.691544 | -5 | -3.0 |
2013-01-05 | -0.233021 | -0.619112 | -0.628579 | -5 | -4.0 |
2013-01-06 | -0.493946 | -0.848247 | -1.633055 | -5 | -5.0 |
缺失值处理是Pandas数据处理的一部分,以下仅展示了部分操作
有关缺失值的处理可以查看下面两篇文章:
Pandas中使用np.nan
来表示缺失值,可以使用reindex
更改/添加/删除指定轴上的索引
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
df1
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | 0.844032 | 5 | NaN | 1.0 |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | 5 | 1.0 | 1.0 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | 5 | 2.0 | NaN |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | 5 | 3.0 | NaN |
舍弃含有NaN的行
df1.dropna(how='any')
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | 5 | 1.0 | 1.0 |
填充缺失数据
df1.fillna(value=5)
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | 0.844032 | 5 | 5.0 | 1.0 |
2013-01-02 | 0.986576 | -0.689543 | -0.383265 | 5 | 1.0 | 1.0 |
2013-01-03 | -0.192426 | 1.740765 | 0.730479 | 5 | 2.0 | 5.0 |
2013-01-04 | 0.047348 | -1.952303 | -0.691544 | 5 | 3.0 | 5.0 |
pd.isnull(df1)
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-01 | False | False | False | False | True | False |
2013-01-02 | False | False | False | False | False | False |
2013-01-03 | False | False | False | False | False | True |
2013-01-04 | False | False | False | False | False | True |
在我的Pandas120题系列中有很多关于Pandas常用操作介绍!
欢迎微信搜索公众号【早起Python】关注
后台回复pandas获取相关习题!
在进行统计操作时需要排除缺失值!
「描述性统计?」
纵向求均值
df.mean()
A 0.261411 B 0.094380 C 0.460223 D 5.000000 F 3.000000 dtype: float64
横向求均值
df.mean(1)
2013-01-01 1.461008 2013-01-02 1.182754 2013-01-03 1.855764 2013-01-04 1.080700 2013-01-05 2.096142 2013-01-06 2.595050 Freq: D, dtype: float64
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
s
2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64
df.sub(s, axis='index')
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | NaN | NaN | NaN | NaN | NaN |
2013-01-02 | NaN | NaN | NaN | NaN | NaN |
2013-01-03 | -1.192426 | 0.740765 | -0.269521 | 4.0 | 1.0 |
2013-01-04 | -2.952652 | -4.952303 | -3.691544 | 2.0 | 0.0 |
2013-01-05 | -4.766979 | -4.380888 | -4.371421 | 0.0 | -1.0 |
2013-01-06 | NaN | NaN | NaN | NaN | NaN |
df.apply(np.cumsum)
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | 0.844032 | 5 | NaN |
2013-01-02 | 0.986576 | -0.689543 | 0.460767 | 10 | 1.0 |
2013-01-03 | 0.794151 | 1.051222 | 1.191246 | 15 | 3.0 |
2013-01-04 | 0.841498 | -0.901081 | 0.499702 | 20 | 6.0 |
2013-01-05 | 1.074519 | -0.281969 | 1.128281 | 25 | 10.0 |
2013-01-06 | 1.568465 | 0.566278 | 2.761336 | 30 | 15.0 |
df.apply(lambda x: x.max() - x.min())
A 1.179002 B 3.693068 C 2.324599 D 0.000000 F 4.000000 dtype: float64
文档中为Histogramming
,但示例就是.value_counts()
的使用
s = pd.Series(np.random.randint(0, 7, size=10))
s
0 6 1 1 2 4 3 6 4 3 5 2 6 3 7 5 8 2 9 2 dtype: int64
s.value_counts()
2 3 6 2 3 2 5 1 4 1 1 1 dtype: int64
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
在我的Pandas120题系列中有很多关于数据合并的操作,
欢迎微信搜索公众号【早起Python】关注
后台回复pandas获取相关习题!
在连接/合并类型操作的情况下,pandas提供了各种功能,可以轻松地将Series和DataFrame对象与各种用于索引和关系代数功能的集合逻辑组合在一起。
df = pd.DataFrame(np.random.randn(10, 4))
df
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0.413620 | -1.114527 | 0.322678 | 1.207744 |
1 | -1.812499 | -1.338866 | 0.611622 | 0.445057 |
2 | 0.365098 | 0.177919 | 0.823212 | 1.529158 |
3 | -0.803774 | -1.422255 | 1.411392 | 0.400721 |
4 | 0.732753 | 1.413181 | -0.338617 | 0.088442 |
5 | -0.509033 | -1.237311 | 1.021978 | -0.596258 |
6 | 0.841053 | -0.404684 | 1.528639 | -0.273577 |
7 | 0.966884 | -2.142516 | 1.041670 | 0.109264 |
8 | 2.231267 | 2.011625 | 0.601062 | 0.533928 |
9 | -0.134641 | 0.165157 | -1.236827 | 1.681187 |
pieces = [df[:3], df[3:6], df[7:]]
pd.concat(pieces)
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0.413620 | -1.114527 | 0.322678 | 1.207744 |
1 | -1.812499 | -1.338866 | 0.611622 | 0.445057 |
2 | 0.365098 | 0.177919 | 0.823212 | 1.529158 |
3 | -0.803774 | -1.422255 | 1.411392 | 0.400721 |
4 | 0.732753 | 1.413181 | -0.338617 | 0.088442 |
5 | -0.509033 | -1.237311 | 1.021978 | -0.596258 |
7 | 0.966884 | -2.142516 | 1.041670 | 0.109264 |
8 | 2.231267 | 2.011625 | 0.601062 | 0.533928 |
9 | -0.134641 | 0.165157 | -1.236827 | 1.681187 |
「注意」
将列添加到DataFrame相对较快。
但是,添加一行需要一个副本,并且可能浪费时间
我们建议将预构建的记录列表传递给DataFrame构造函数,而不是通过迭代地将记录追加到其来构建DataFrame
left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
left
key | lval | |
---|---|---|
0 | foo | 1 |
1 | foo | 2 |
right
key | rval | |
---|---|---|
0 | foo | 4 |
1 | foo | 5 |
pd.merge(left, right, on='key')
key | lval | rval | |
---|---|---|---|
0 | foo | 1 | 4 |
1 | foo | 1 | 5 |
2 | foo | 2 | 4 |
3 | foo | 2 | 5 |
df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
df
A | B | C | D | |
---|---|---|---|---|
0 | -0.142659 | -0.941171 | -0.186519 | -0.811977 |
1 | 0.584561 | 0.177886 | -0.190396 | 0.664233 |
2 | -1.807829 | 0.268193 | 0.683990 | 0.477042 |
3 | -1.474986 | -1.098600 | -0.038280 | 2.087236 |
4 | 1.906703 | 0.678425 | -0.090156 | -0.444430 |
5 | 0.329748 | 1.110306 | 0.713732 | -0.714841 |
6 | 1.218329 | -0.376264 | 0.389029 | -1.526025 |
7 | 0.423347 | 1.821127 | -1.795346 | -0.795738 |
s = df.iloc[3]
df.append(s, ignore_index=True)
A | B | C | D | |
---|---|---|---|---|
0 | -0.142659 | -0.941171 | -0.186519 | -0.811977 |
1 | 0.584561 | 0.177886 | -0.190396 | 0.664233 |
2 | -1.807829 | 0.268193 | 0.683990 | 0.477042 |
3 | -1.474986 | -1.098600 | -0.038280 | 2.087236 |
4 | 1.906703 | 0.678425 | -0.090156 | -0.444430 |
5 | 0.329748 | 1.110306 | 0.713732 | -0.714841 |
6 | 1.218329 | -0.376264 | 0.389029 | -1.526025 |
7 | 0.423347 | 1.821127 | -1.795346 | -0.795738 |
8 | -1.474986 | -1.098600 | -0.038280 | 2.087236 |
「数据分组」是指涉及以下一个或多个步骤的过程:
更多操作可以查阅官方文档[2]
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C' : np.random.randn(8), 'D' : np.random.randn(8)})
df
A | B | C | D | |
---|---|---|---|---|
0 | foo | one | -1.145254 | 0.974305 |
1 | bar | one | 1.195757 | -0.187145 |
2 | foo | two | -0.699446 | 0.248682 |
3 | bar | three | -0.587003 | -0.200543 |
4 | foo | two | 2.046185 | -1.377637 |
5 | bar | two | 0.444696 | -0.880975 |
6 | foo | one | 0.057713 | -1.275762 |
7 | foo | three | 0.272196 | 0.016167 |
df.groupby('A').sum()
C | D | |
---|---|---|
A | ||
bar | 1.053451 | -1.268663 |
foo | 0.531394 | -1.414245 |
df.groupby(['A', 'B']).sum()
C | D | ||
---|---|---|---|
A | B | ||
bar | one | 1.195757 | -0.187145 |
three | -0.587003 | -0.200543 | |
two | 0.444696 | -0.880975 | |
foo | one | -1.087541 | -0.301457 |
three | 0.272196 | 0.016167 | |
two | 1.346739 | -1.128956 |
详细教程请参阅官方文档[3]中「分层索引和重塑」部分。
可以进行数据压缩
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df2 = df[:4]
df2
A | B | ||
---|---|---|---|
first | second | ||
bar | one | -0.625492 | 2.471493 |
two | 0.934708 | 1.595349 | |
baz | one | 0.686079 | 0.279957 |
two | 0.039190 | -0.534317 |
stacked = df2.stack()
stacked
first second bar one A -0.625492 B 2.471493 two A 0.934708 B 1.595349 baz one A 0.686079 B 0.279957 two A 0.039190 B -0.534317 dtype: float64
stack()的反向操作是unstack(),默认情况下,它会将最后一层数据进行unstack():
stacked.unstack()
A | B | ||
---|---|---|---|
first | second | ||
bar | one | -0.625492 | 2.471493 |
two | 0.934708 | 1.595349 | |
baz | one | 0.686079 | 0.279957 |
two | 0.039190 | -0.534317 |
stacked.unstack(1)
second | one | two | |
---|---|---|---|
first | |||
bar | A | -0.625492 | 0.934708 |
B | 2.471493 | 1.595349 | |
baz | A | 0.686079 | 0.039190 |
B | 0.279957 | -0.534317 |
stacked.unstack(0)
first | bar | baz | |
---|---|---|---|
second | |||
one | A | -0.625492 | 0.686079 |
B | 2.471493 | 0.279957 | |
two | A | 0.934708 | 0.039190 |
B | 1.595349 | -0.534317 |
Pandas中实现数据透视表很简单,但是相比之下并没有Excel灵活,可以查看我的文章
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4, 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, 'D' : np.random.randn(12), 'E' : np.random.randn(12)})
df
A | B | C | D | E | |
---|---|---|---|---|---|
0 | one | A | foo | -0.072719 | -0.034173 |
1 | one | B | foo | 1.262336 | -0.907695 |
2 | two | C | foo | 0.093161 | -1.516473 |
3 | three | A | bar | 0.190056 | 0.481209 |
4 | one | B | bar | 1.319855 | 0.255924 |
5 | one | C | bar | 0.374758 | -0.019331 |
6 | two | A | foo | -1.019282 | 0.673759 |
7 | three | B | foo | -1.526206 | -0.521203 |
8 | one | C | foo | 1.600168 | 1.632461 |
9 | one | A | bar | -2.410462 | -0.271305 |
10 | two | B | bar | 0.387701 | -1.039195 |
11 | three | C | bar | -1.367669 | -1.760517 |
df.pivot_table(values='D', index=['A', 'B'], columns='C')
C | bar | foo | |
---|---|---|---|
A | B | ||
one | A | -2.410462 | -0.072719 |
B | 1.319855 | 1.262336 | |
C | 0.374758 | 1.600168 | |
three | A | 0.190056 | NaN |
B | NaN | -1.526206 | |
C | -1.367669 | NaN | |
two | A | NaN | -1.019282 |
B | 0.387701 | NaN | |
C | NaN | 0.093161 |
对于在频率转换期间执行重采样操作(例如,将秒数据转换为5分钟数据),pandas具有简单、强大和高效的功能。这在金融应用中非常常见,但不仅限于此。参见官方文档[4]中「时间序列」部分。
时区表示
rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min').sum()
2012-01-01 27339 Freq: 5T, dtype: int64
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
ts
2012-03-06 -0.118691 2012-03-07 -1.424038 2012-03-08 0.377441 2012-03-09 -1.116195 2012-03-10 1.180595 Freq: D, dtype: float64
ts_utc = ts.tz_localize('UTC')
ts_utc
2012-03-06 00:00:00+00:00 -0.118691 2012-03-07 00:00:00+00:00 -1.424038 2012-03-08 00:00:00+00:00 0.377441 2012-03-09 00:00:00+00:00 -1.116195 2012-03-10 00:00:00+00:00 1.180595 Freq: D, dtype: float64
时区转换
ts_utc.tz_convert('US/Eastern')
2012-03-05 19:00:00-05:00 -0.118691 2012-03-06 19:00:00-05:00 -1.424038 2012-03-07 19:00:00-05:00 0.377441 2012-03-08 19:00:00-05:00 -1.116195 2012-03-09 19:00:00-05:00 1.180595 Freq: D, dtype: float64
在时间跨度表示之间进行转换
rng = pd.date_range('1/1/2012', periods=5, freq='M')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts
2012-01-31 1.138201 2012-02-29 0.677539 2012-03-31 0.272933 2012-04-30 -0.238112 2012-05-31 -1.122162 Freq: M, dtype: float64
ps = ts.to_period()
ps
2012-01 1.138201 2012-02 0.677539 2012-03 0.272933 2012-04 -0.238112 2012-05 -1.122162 Freq: M, dtype: float64
ps.to_timestamp()
2012-01-01 1.138201 2012-02-01 0.677539 2012-03-01 0.272933 2012-04-01 -0.238112 2012-05-01 -1.122162 Freq: MS, dtype: float64
在周期和时间戳之间转换可以使用一些方便的算术函数。
在以下示例中,我们将以11月结束的年度的季度频率转换为季度结束后的月末的上午9点:
prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
ts = pd.Series(np.random.randn(len(prng)), prng)
ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
ts.head()
1990-03-01 09:00 -1.555191 1990-06-01 09:00 1.535344 1990-09-01 09:00 -0.092187 1990-12-01 09:00 1.285081 1991-03-01 09:00 1.130063 Freq: H, dtype: float64
事实上,常用有关时间序列的操作远超过上方的官方示例,简单来说与日期有关的操作从创建到转换pandas都能很好的完成!
Pandas可以在一个DataFrame中包含分类数据。有关完整文档,请参阅分类介绍和API文档。
df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
df['grade'] = df['raw_grade'].astype("category")
df['grade']
0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]
将类别重命名为更有意义的名称(Series.cat.categories()
)
df["grade"].cat.categories = ["very good", "good", "very bad"]
重新排序类别,并同时添加缺少的类别(在有缺失的情况下,string .cat()下的方法返回一个新的系列)。
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
df["grade"]
0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]
df.sort_values(by='grade')
id | raw_grade | grade | |
---|---|---|---|
5 | 6 | e | very bad |
1 | 2 | b | good |
2 | 3 | b | good |
0 | 1 | a | very good |
3 | 4 | a | very good |
4 | 5 | a | very good |
df.groupby("grade").size()
grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64
在我的Pandas120题系列中有很多关于数据可视化的操作,
欢迎微信搜索公众号【早起Python】关注
后台回复pandas获取相关习题!
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts.head()
2000-01-01 -1.946554 2000-01-02 -0.354670 2000-01-03 0.361473 2000-01-04 -0.109408 2000-01-05 0.877671 Freq: D, dtype: float64
ts = ts.cumsum() #累加
在Pandas中可以使用.plot()
直接绘图,支持多种图形和自定义选项点击可以查阅官方文档[5]
ts.plot()
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=['A', 'B', 'C', 'D'])
df = df.cumsum()
使用plt
绘图,具体参数设置可以查阅matplotlib官方文档
plt.figure(); df.plot(); plt.legend(loc='best')
「将数据写入csv
,如果有中文需要注意编码」
df.to_csv('foo.csv')
从csv
中读取数据
pd.read_csv('foo.csv').head()
Unnamed: 0 | A | B | C | D | |
---|---|---|---|---|---|
0 | 2000-01-01 | -0.640246 | -1.846295 | -0.181754 | 0.981574 |
1 | 2000-01-02 | -1.580720 | -2.382281 | -0.745580 | 0.175213 |
2 | 2000-01-03 | -2.745502 | -1.809188 | -0.371424 | -0.724011 |
3 | 2000-01-04 | -2.576642 | -1.287329 | -0.615925 | -1.154665 |
4 | 2000-01-05 | -2.442921 | -0.481561 | -0.283864 | 0.068934 |
将数据导出为hdf
格式
df.to_hdf('foo.h5','df')
从hdf
文件中读取数据前五行
pd.read_hdf('foo.h5','df').head()
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | -0.640246 | -1.846295 | -0.181754 | 0.981574 |
2000-01-02 | -1.580720 | -2.382281 | -0.745580 | 0.175213 |
2000-01-03 | -2.745502 | -1.809188 | -0.371424 | -0.724011 |
2000-01-04 | -2.576642 | -1.287329 | -0.615925 | -1.154665 |
2000-01-05 | -2.442921 | -0.481561 | -0.283864 | 0.068934 |
将数据保存为xlsx
格式
df.to_excel('foo.xlsx', sheet_name='Sheet1')
从xlsx
格式中按照指定要求读取sheet1中数据
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']).head()
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | -0.640246 | -1.846295 | -0.181754 | 0.981574 |
2000-01-02 | -1.580720 | -2.382281 | -0.745580 | 0.175213 |
2000-01-03 | -2.745502 | -1.809188 | -0.371424 | -0.724011 |
2000-01-04 | -2.576642 | -1.287329 | -0.615925 | -1.154665 |
2000-01-05 | -2.442921 | -0.481561 | -0.283864 | 0.068934 |
如果你在使用Pandas的过程中遇到了错误,就像下面一样:
>>> if pd.Series([False, T`mrue, False]): ... print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
可以查阅官方文档来了解该如何解决!
[1]
https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics
[2]
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#groupby
[3]
https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced-hierarchical
[4]
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries
[5]
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html#plotting
本文分享自微信公众号 - 早起Python(zaoqi-python),作者:刘早起
原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。
原始发表时间:2020-09-05
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句