专栏首页机器学习与生成对抗网络Numpy核心语法和代码整理汇总!

Numpy核心语法和代码整理汇总!

Numpy是一个用python实现的科学计算的扩展程序库,包括:

  • 一个强大的N维数组对象Array;
  • 比较成熟的(广播)函数库;
  • 用于整合C/C++和Fortran代码的工具包;
  • 实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。

NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。

本文整理了一个Numpy的小抄表,总结了Numpy的常用操作,可以收藏慢慢看。

(图片可以点开大图查看哦~)

1

安装Numpy

可以通过 Pip 或者 Anaconda安装Numpy:

$ pip install numpy

$ conda install numpy

2

基础

NumPy最常用的功能之一就是NumPy数组:列表和NumPy数组的最主要区别在于功能性和速度。

列表提供基本操作,但NumPy添加了FTTs、卷积、快速搜索、基本统计、线性代数、直方图等。

两者数据科学最重要的区别是能够用NumPy数组进行元素级计算。

  • axis 0:通常指行
  • axis 1:通常指列

1.占位符

举例:

import numpy as np

# 1 dimensional
x = np.array([1,2,3])
# 2 dimensional
y = np.array([(1,2,3),(4,5,6)])

x = np.arange(3)
>>> array([0, 1, 2])

y = np.arange(3.0)
>>> array([ 0., 1., 2.])

x = np.arange(3,7)
>>> array([3, 4, 5, 6])

y = np.arange(3,7,2)
>>> array([3, 5])

2.数组属性

3.拷贝 /排序

举例:

import numpy as np
# Sort sorts in ascending order
y = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
y.sort()
print(y)
>>> [ 1  2  3  4  5  6  7  8  9  10]

4.数组操作例程

增加或减少元素

举例:

import numpy as np
# Append items to array
a = np.array([(1, 2, 3),(4, 5, 6)])
b = np.append(a, [(7, 8, 9)])
print(b)
>>> [1 2 3 4 5 6 7 8 9]

# Remove index 2 from previous array
print(np.delete(b, 2))
>>> [1 2 4 5 6 7 8 9]

组合数组

举例:

import numpy as np
a = np.array([1, 3, 5])
b = np.array([2, 4, 6])

# Stack two arrays row-wise
print(np.vstack((a,b)))
>>> [[1 3 5]
     [2 4 6]]

# Stack two arrays column-wise
print(np.hstack((a,b)))
>>> [1 3 5 2 4 6]

分割数组

举例:

# Split array into groups of ~3
a = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(np.array_split(a, 3))
>>> [array([1, 2, 3]), array([4, 5, 6]), array([7, 8])]

数组形状变化

  • 操作
  • 其他

举例:

# Find inverse of a given matrix
>>> np.linalg.inv([[3,1],[2,4]])
array([[ 0.4, -0.1],
       [-0.2, 0.3]])

5.数学计算

操作

举例:

# If a 1d array is added to a 2d array (or the other way), NumPy
# chooses the array with smaller dimension and adds it to the one
# with bigger dimension
a = np.array([1, 2, 3])
b = np.array([(1, 2, 3), (4, 5, 6)])
print(np.add(a, b))
>>> [[2 4 6]
     [5 7 9]]
     
# Example of np.roots
# Consider a polynomial function (x-1)^2 = x^2 - 2*x + 1
# Whose roots are 1,1
>>> np.roots([1,-2,1])
array([1., 1.])
# Similarly x^2 - 4 = 0 has roots as x=±2
>>> np.roots([1,0,-4])
array([-2., 2.])

比较

举例:

# Using comparison operators will create boolean NumPy arrays
z = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
c = z < 6
print(c)
>>> [ True  True  True  True  True False False False False False]

基本的统计

举例:

# Statistics of an array
a = np.array([1, 1, 2, 5, 8, 10, 11, 12])

# Standard deviation
print(np.std(a))
>>> 4.2938910093294167

# Median
print(np.median(a))
>>> 6.5

更多

6.切片和子集

举例:

b = np.array([(1, 2, 3), (4, 5, 6)])

# The index *before* the comma refers to *rows*,
# the index *after* the comma refers to *columns*
print(b[0:1, 2])
>>> [3]

print(b[:len(b), 2])
>>> [3 6]

print(b[0, :])
>>> [1 2 3]

print(b[0, 2:])
>>> [3]

print(b[:, 0])
>>> [1 4]

c = np.array([(1, 2, 3), (4, 5, 6)])
d = c[1:2, 0:2]
print(d)
>>> [[4 5]]

切片举例:

import numpy as np
a1 = np.arange(0, 6)
a2 = np.arange(10, 16)
a3 = np.arange(20, 26)
a4 = np.arange(30, 36)
a5 = np.arange(40, 46)
a6 = np.arange(50, 56)
a = np.vstack((a1, a2, a3, a4, a5, a6))

生成矩阵和切片图示

7.小技巧

布尔索引

# Index trick when working with two np-arrays
a = np.array([1,2,3,6,1,4,1])
b = np.array([5,6,7,8,3,1,2])

# Only saves a at index where b == 1
other_a = a[b == 1]
#Saves every spot in a except at index where b != 1
other_other_a = a[b != 1]
import numpy as np
x = np.array([4,6,8,1,2,6,9])
y = x > 5
print(x[y])
>>> [6 8 6 9]

# Even shorter
x = np.array([1, 2, 3, 4, 4, 35, 212, 5, 5, 6])
print(x[x < 5])
>>> [1 2 3 4 4]

本文分享自微信公众号 - 机器学习与生成对抗网络(AI_bryant8)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-09-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 两幅图像!这样能训练好 GAN 做图像转换吗?

    GAN似乎离不开大量的训练数据量。之前在知乎回答过一个问题,关于用GAN做数据增强的个人鄙见:

    公众号机器学习与生成对抗网络
  • 伯克利《生成对抗网络》综述

    https://sites.google.com/view/berkeley-cs294-158-sp20/

    公众号机器学习与生成对抗网络
  • 写出漂亮 Python 代码的 20条准则

    通常,当我们在学校学习时,编程美学不是一个关键问题。用 Python 写代码时,个人也会遵循自己的风格。然而,当我们必须花大把时间来理解一个人的隐式代码时,这项...

    公众号机器学习与生成对抗网络
  • Numpy实战全集

    0.导语1.Numpy基本操作1.1 列表转为矩阵1.2 维度1.3 行数和列数()1.4 元素个数2.Numpy创建array2.1 一维array创建2.1...

    公众号guangcity
  • Python之numpy的ndarray数组使用方法介绍

    NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:

    我是攻城师
  • python中numpy和pandas介

    numpy和pandas是python中用于处理数据的两个库。 numpy介绍: numpy用于处理array,且array中数据类型必须一致。下面以代码备注的...

    py3study
  • Numpy中的通用函数

    NumPy数组的计算:通用函数缓慢的循环通用函数介绍探索Numpy的通用函数高级通用函数的特性聚合:最小值、 最大值和其他值数组值求和最大值和最小值其他聚合函数

    用户3577892
  • 【Data Mining】机器学习三剑客之Numpy常用用法总结

    玩数据分析、数据挖掘、AI的都知道这个python库用的是很多的,里面包含各种操作,在实际的dataset的处理当中是非常常用的,这里我做一个总结,方便自己...

    接地气的陈老师
  • Python数据分析(3)-numpy中nd数组的创建

    1、ndarray的内存结构 和其他的库一样,每个库都可能有自己独特的数据结构,例如OpenCV,numpy库的多维数组叫做ndarray( N dimensi...

    锦小年
  • 数据分析 ———— numpy基础(一)

    准备了好长时间,想要写点关于数据分析的文章,但一直忙于工作,忙里抽闲更新一篇关于numpy的文章。

    andrew_a

扫码关注云+社区

领取腾讯云代金券