Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +
, -
and *
.
Example 1:
Input: "2-1-1" Output: [0, 2] Explanation: ((2-1)-1) = 0 (2-(1-1)) = 2
Example 2:
Input: "2*3-4*5"
Output: [-34, -14, -10, -10, 10]
Explanation: (2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10
思路:
题目意思是给一个字符串只含有加减乘字符和数字,让添加括号,计算出等式的结果,返回所有的结果,这种返回所有结果的题目,多半就是使用回溯来做,不同的是,这里的回溯是有记忆的回溯,解题思路就是根据标点符号进行切割字符串,然后递归求解,求解两部分的笛卡尔积。(可以用一个map来记录字符串计算结果,如果计算过就直接返回。来减少计算量。)
代码:
java:
class Solution {
private Map<String, List<Integer>> mem = new HashMap<>();
public List<Integer> diffWaysToCompute(String input) {
if (mem.containsKey(input)) return mem.get(input);
List<Integer> res = new ArrayList<>();
for (int i = 0; i < input.length(); i++) {
char c = input.charAt(i);
if (!(c == '+' || c == '-' || c == '*')) continue;
List<Integer> left = diffWaysToCompute(input.substring(0, i));
List<Integer> right = diffWaysToCompute(input.substring(i+1));
// 笛卡尔积
for (Integer l : left) {
for (Integer r : right) {
int temp = 0;
if (c == '+') temp = r + l;
else if (c == '-') temp = l - r;
else /*(c == '*')*/ temp = l * r;
res.add(temp);
}
}
}
if (res.isEmpty()) res.add(Integer.parseInt(input));
mem.put(input, res);
return res;
}
}