前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python爬虫之scrapy的入门使用

Python爬虫之scrapy的入门使用

作者头像
海仔
发布2020-09-28 12:37:16
9200
发布2020-09-28 12:37:16
举报
文章被收录于专栏:海仔技术驿站

scrapy的入门使用

学习目标:
  1. 掌握 scrapy的安装
  2. 应用 创建scrapy的项目
  3. 应用 创建scrapy爬虫
  4. 应用 运行scrapy爬虫
  5. 应用 scrapy定位以及提取数据或属性值的方法
  6. 掌握 response响应对象的常用属性

1 安装scrapy

命令:     sudo apt-get install scrapy 或者:     pip/pip3 install scrapy

2 scrapy项目开发流程

  1. 创建项目:     scrapy startproject mySpider
  2. 生成一个爬虫:     scrapy genspider demo demo.cn
  3. 提取数据:     根据网站结构在spider中实现数据采集相关内容
  4. 保存数据:     使用pipeline进行数据后续处理和保存

3. 创建项目

通过命令将scrapy项目的的文件生成出来,后续步骤都是在项目文件中进行相关操作,下面以抓取传智师资库来学习scrapy的入门使用:http://www.itcast.cn/channel/teacher.shtml

创建scrapy项目的命令:     scrapy startproject <项目名字> 示例:     scrapy startproject myspider

生成的目录和文件结果如下:

4. 创建爬虫

通过命令创建出爬虫文件,爬虫文件为主要的代码作业文件,通常一个网站的爬取动作都会在爬虫文件中进行编写。

命令: 在项目路径下执行:     scrapy genspider <爬虫名字> <允许爬取的域名>

爬虫名字: 作为爬虫运行时的参数 允许爬取的域名: 为对于爬虫设置的爬取范围,设置之后用于过滤要爬取的url,如果爬取的url与允许的域不通则被过滤掉。

示例:

代码语言:javascript
复制
    cd myspider
    scrapy genspider demo demo.cn

生成的目录和文件结果如下:

5. 完善爬虫

在上一步生成出来的爬虫文件中编写指定网站的数据采集操作,实现数据提取

5.1 在/myspider/myspider/spiders/Spider.py中修改内容如下:
代码语言:javascript
复制
import scrapy

class Spider(scrapy.Spider):  # 继承scrapy.spider
	# 爬虫名字 
    name = 'demo' 
    # 允许爬取的范围
    allowed_domains = ['demo.cn'] 
    # 开始爬取的url地址
    start_urls = ['http://www.demo.cn/channel/teacher.shtml']
    
    # 数据提取的方法,接受下载中间件传过来的response
    def parse(self, response): 
    	# scrapy的response对象可以直接进行xpath
    	names = response.xpath('//div[@class="tea_con"]//li/div/h3/text()') 
    	print(names)

    	# 获取具体数据文本的方式如下
        # 分组
    	li_list = response.xpath('//div[@class="tea_con"]//li') 
        for li in li_list:
        	# 创建一个数据字典
            item = {}
            # 利用scrapy封装好的xpath选择器定位元素,并通过extract()或extract_first()来获取结果
            item['name'] = li.xpath('.//h3/text()').extract_first() # 老师的名字
            item['level'] = li.xpath('.//h4/text()').extract_first() # 老师的级别
            item['text'] = li.xpath('.//p/text()').extract_first() # 老师的介绍
            print(item)
注意:
  • scrapy.Spider爬虫类中必须有名为parse的解析
  • 如果网站结构层次比较复杂,也可以自定义其他解析函数
  • 在解析函数中提取的url地址如果要发送请求,则必须属于allowed_domains范围内,但是start_urls中的url地址不受这个限制,我们会在后续的课程中学习如何在解析函数中构造发送请求
  • 启动爬虫的时候注意启动的位置,是在项目路径下启动
  • parse()函数中使用yield返回数据,注意:解析函数中的yield能够传递的对象只能是:BaseItem, Request, dict, None
5.2 定位元素以及提取数据、属性值的方法

解析并获取scrapy爬虫中的数据: 利用xpath规则字符串进行定位和提取

  1. response.xpath方法的返回结果是一个类似list的类型,其中包含的是selector对象,操作和列表一样,但是有一些额外的方法
  2. 额外方法extract():返回一个包含有字符串的列表
  3. 额外方法extract_first():返回列表中的第一个字符串,列表为空没有返回None
5.3 response响应对象的常用属性
  • response.url:当前响应的url地址
  • response.request.url:当前响应对应的请求的url地址
  • response.headers:响应头
  • response.requests.headers:当前响应的请求头
  • response.body:响应体,也就是html代码,byte类型
  • response.status:响应状态码

6 保存数据

利用管道pipeline来处理(保存)数据

6.1 在pipelines.py文件中定义对数据的操作
  1. 定义一个管道类
  2. 重写管道类的process_item方法
  3. process_item方法处理完item之后必须返回给引擎
代码语言:javascript
复制
import json

class DemoPipeline():
    # 爬虫文件中提取数据的方法每yield一次item,就会运行一次
    # 该方法为固定名称函数
    def process_item(self, item, spider):
        print(item)
        return item
6.2 在settings.py配置启用管道
代码语言:javascript
复制
ITEM_PIPELINES = {
    'myspider.pipelines.DemoPipeline': 400
}

配置项中键为使用的管道类,管道类使用.进行分割,第一个为项目目录,第二个为文件,第三个为定义的管道类。 配置项中值为管道的使用顺序,设置的数值约小越优先执行,该值一般设置为1000以内。

7. 运行scrapy

命令:在项目目录下执行scrapy crawl <爬虫名字>

示例:scrapy crawl demo


小结

  1. scrapy的安装:pip install scrapy
  2. 创建scrapy的项目: scrapy startproject myspider
  3. 创建scrapy爬虫:在项目目录下执行 scrapy genspider demo demo.cn
  4. 运行scrapy爬虫:在项目目录下执行 scrapy crawl demo
  5. 解析并获取scrapy爬虫中的数据:
    1. response.xpath方法的返回结果是一个类似list的类型,其中包含的是selector对象,操作和列表一样,但是有一些额外的方法
    2. extract() 返回一个包含有字符串的列表
    3. extract_first() 返回列表中的第一个字符串,列表为空没有返回None
  6. scrapy管道的基本使用:
    1. 完善pipelines.py中的process_item函数
    2. 在settings.py中设置开启pipeline
  7. response响应对象的常用属性
    1. response.url:当前响应的url地址
    2. response.request.url:当前响应对应的请求的url地址
    3. response.headers:响应头
    4. response.requests.headers:当前响应的请求头
    5. response.body:响应体,也就是html代码,byte类型
    6. response.status:响应状态码

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020/09/26 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • scrapy的入门使用
    • 1 安装scrapy
      • 2 scrapy项目开发流程
        • 3. 创建项目
          • 4. 创建爬虫
            • 5. 完善爬虫
              • 5.1 在/myspider/myspider/spiders/Spider.py中修改内容如下:
              • 5.2 定位元素以及提取数据、属性值的方法
              • 5.3 response响应对象的常用属性
            • 6 保存数据
              • 6.1 在pipelines.py文件中定义对数据的操作
              • 6.2 在settings.py配置启用管道
            • 7. 运行scrapy
            • 小结
            相关产品与服务
            消息队列 TDMQ
            消息队列 TDMQ (Tencent Distributed Message Queue)是腾讯基于 Apache Pulsar 自研的一个云原生消息中间件系列,其中包含兼容Pulsar、RabbitMQ、RocketMQ 等协议的消息队列子产品,得益于其底层计算与存储分离的架构,TDMQ 具备良好的弹性伸缩以及故障恢复能力。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档