命令: sudo apt-get install scrapy 或者: pip/pip3 install scrapy
通过命令将scrapy项目的的文件生成出来,后续步骤都是在项目文件中进行相关操作,下面以抓取传智师资库来学习scrapy的入门使用:http://www.itcast.cn/channel/teacher.shtml
创建scrapy项目的命令: scrapy startproject <项目名字> 示例: scrapy startproject myspider
生成的目录和文件结果如下:
通过命令创建出爬虫文件,爬虫文件为主要的代码作业文件,通常一个网站的爬取动作都会在爬虫文件中进行编写。
命令: 在项目路径下执行: scrapy genspider <爬虫名字> <允许爬取的域名>
爬虫名字: 作为爬虫运行时的参数 允许爬取的域名: 为对于爬虫设置的爬取范围,设置之后用于过滤要爬取的url,如果爬取的url与允许的域不通则被过滤掉。
示例:
cd myspider
scrapy genspider demo demo.cn
生成的目录和文件结果如下:
在上一步生成出来的爬虫文件中编写指定网站的数据采集操作,实现数据提取
import scrapy
class Spider(scrapy.Spider): # 继承scrapy.spider
# 爬虫名字
name = 'demo'
# 允许爬取的范围
allowed_domains = ['demo.cn']
# 开始爬取的url地址
start_urls = ['http://www.demo.cn/channel/teacher.shtml']
# 数据提取的方法,接受下载中间件传过来的response
def parse(self, response):
# scrapy的response对象可以直接进行xpath
names = response.xpath('//div[@class="tea_con"]//li/div/h3/text()')
print(names)
# 获取具体数据文本的方式如下
# 分组
li_list = response.xpath('//div[@class="tea_con"]//li')
for li in li_list:
# 创建一个数据字典
item = {}
# 利用scrapy封装好的xpath选择器定位元素,并通过extract()或extract_first()来获取结果
item['name'] = li.xpath('.//h3/text()').extract_first() # 老师的名字
item['level'] = li.xpath('.//h4/text()').extract_first() # 老师的级别
item['text'] = li.xpath('.//p/text()').extract_first() # 老师的介绍
print(item)
解析并获取scrapy爬虫中的数据: 利用xpath规则字符串进行定位和提取
利用管道pipeline来处理(保存)数据
import json
class DemoPipeline():
# 爬虫文件中提取数据的方法每yield一次item,就会运行一次
# 该方法为固定名称函数
def process_item(self, item, spider):
print(item)
return item
ITEM_PIPELINES = {
'myspider.pipelines.DemoPipeline': 400
}
配置项中键为使用的管道类,管道类使用.进行分割,第一个为项目目录,第二个为文件,第三个为定义的管道类。 配置项中值为管道的使用顺序,设置的数值约小越优先执行,该值一般设置为1000以内。
命令:在项目目录下执行scrapy crawl <爬虫名字>
示例:scrapy crawl demo