前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >189A Cut Ribbon(dp)

189A Cut Ribbon(dp)

作者头像
dejavu1zz
发布2020-10-23 15:18:48
3940
发布2020-10-23 15:18:48
举报
文章被收录于专栏:奇妙的算法世界

题意

Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:

After the cutting each ribbon piece should have length a, b or c. After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.

Input The first line contains four space-separated integers n, a, b and c (1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers a, b and c can coincide.

Output Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.

Examples input 5 5 3 2 output 2 input 7 5 5 2 output 2

思路

一道完全背包的题目,由于之前只是接触了01背包,没有向下扩展下去,所以没有看出来。状态转移方程是dp[j]=max(dp[j],dp[j-a[i]]+1)。需要注意的是,要把dp[1~n]初始化为-INF,否则可能会出现没装满的情况。

AC代码

代码语言:javascript
复制
#include<bits/stdc++.h>
#define x first
#define y second
#pragma GCC optimize(2)
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("Ofast")
#pragma GCC optimize(3)
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC target("sse3","sse2","sse")
#pragma GCC target("avx","sse4","sse4.1","sse4.2","ssse3")
#pragma GCC target("f16c")
#pragma GCC optimize("inline","fast-math","unroll-loops","no-stack-protector")
#pragma GCC diagnostic error "-fwhole-program"
#pragma GCC diagnostic error "-fcse-skip-blocks"
#pragma GCC diagnostic error "-funsafe-loop-optimizations"
#pragma GCC diagnostic error "-std=c++14"
#define IOS ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
typedef long long LL;
const int N=5005;
const int INF=0x3f3f3f3f;
const int MOD=998244353;
int a[N];
int dp[N];
int main(){
    IOS;
    int a[4];
    int n;cin>>n;
    for(int i=1;i<=3;i++) cin>>a[i];
    for(int i=1;i<=n;i++) dp[i]=-INF;
    dp[0]=0;
    for(int i=1;i<=3;i++){
        for(int j=a[i];j<=n;j++){
            dp[j]=max(dp[j],dp[j-a[i]]+1);
        }
    }
    cout<<dp[n]<<endl;
    return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020/04/08 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 题意
  • 思路
  • AC代码
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档