You are given an array consisting of n integers a1, a2, …, an. Initially ax=1, all other elements are equal to 0.
You have to perform m operations. During the i-th operation, you choose two indices c and d such that li≤c,d≤ri, and swap ac and ad.
Calculate the number of indices k such that it is possible to choose the operations so that ak=1 in the end.
每次可以交换两个数,询问1的最多个数
我们可以维护最小左边界和最大的右边界,最初区间内只有一个点x,然后遍历m个操作,如果区间可以合并,则更新边界即可。
#include<bits/stdc++.h> #define x first #define y second #define PB push_back #define mst(x,a) memset(x,a,sizeof(x)) #define all(a) begin(a),end(a) #define rep(x,l,u) for(ll x=l;x<u;x++) #define rrep(x,l,u) for(ll x=l;x>=u;x--) #define IOS ios::sync_with_stdio(false);cin.tie(0); using namespace std; typedef unsigned long long ull; typedef pair<int,int> PII; typedef pair<long,long> PLL; typedef pair<char,char> PCC; typedef long long ll; const int N=205; const int M=1e6+10; const int INF=0x3f3f3f3f; const int MOD=1e9+7; struct node{ int l,r; }Node[N]; void solve(){ int n,m,x;cin>>n>>x>>m; rep(i,0,m) cin>>Node[i].l>>Node[i].r; int max_r=x,min_l=x; rep(i,0,m){ int l=Node[i].l,r=Node[i].r; if(l<=max_r && r>=min_l){ max_r=max(max_r,r); min_l=min(min_l,l); } } cout<<max_r-min_l+1<<endl; } int main(){ IOS; int t;cin>>t; while(t--){ solve(); } return 0; }
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句