经过上一篇博文的简单介绍,相信大家对ZooKeeper有了更深一步的了解,那么,此篇博文,开始讲述Zookeeper的内部原理。
过程详解: (1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING; (2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的ID比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING (3)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING; (4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING; (5)服务器5启动,同4一样当小弟。
短暂(ephemeral):客户端和服务器端断开连接后,创建的节点自动删除 持久(persistent):客户端和服务器端断开连接后,创建的节点不删除
说明:创建znode时设置顺序标识,znode名称后会附加一个值,顺序号是一个单调递增的计数器,由父节点维护 注意:在分布式系统中,顺序号可以被用于为所有的事件进行全局排序,这样客户端可以通过顺序号推断事件的顺序
1.监听原理详解:
2. 常见的监听:
get path [watch]
ls path [watch]
Paxos算法一种基于消息传递且具有高度容错特性的一致性算法。 分布式系统中的节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing)。基于消息传递通信模型的分布式系统,不可避免的会发生以下错误:进程可能会慢、被杀死或者重启,消息可能会延迟、丢失、重复,在基础 Paxos 场景中,先不考虑可能出现消息篡改即拜占庭错误的情况。Paxos 算法解决的问题是在一个可能发生上述异常的分布式系统中如何就某个值达成一致,保证不论发生以上任何异常,都不会破坏决议的一致性。
在一个Paxos系统中,首先将所有节点划分为Proposers,Acceptors,和Learners。(每个节点都可以身兼数职)
一个完整的Paxos算法流程分为三个阶段: 1. Preposer阶段
2. Accept阶段
2.Learn阶段 Proposer将形成的决议发送给所有Learners
下面针对上述描述做三种情况的推演举例:为了简化流程,我们这里不设置Learner。
Paxos算法缺陷:在网络复杂的情况下,一个应用Paxos算法的分布式系统,可能很久无法收敛,甚至陷入活锁的情况。
造成这种情况的原因是系统中有一个以上的Proposer,多个Proposers相互争夺Acceptors,造成迟迟无法达成一致的情况。针对这种情况,一种改进的Paxos算法被提出:从系统中选出一个节点作为Leader,只有Leader能够发起提案。这样,一次Paxos流程中只有一个Proposer,不会出现活锁的情况,此时只会出现例子中第一种情况。